There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
Answer:
How long would it take a machine to do 13,000 joules of work if the power rating ... An object gains 15 joules of potential energy as it is lifted vertically 5.0 meters. ... As the time required to do a given quantity of work decreases, the power ... How much work is being done to the system by the person of the sled moves 10 m?
Answer: if the door knob is metal the static electricity will exit your body, but shock you in the process
Explanation:
Answer:
Magnetic force, 
Explanation:
It is given that,
Speed of electron, v = 16748.76 m/s
Magnetic field, B = 0.0177 T
Angle between velocity vector and the magnetic field vector are make an angle of 59.24°. Magnetic force is given by :



So, the magnetic force on the electron is
. Hence, this is the required solution.