Answer:
0.37 m
Explanation:
Given :
Window height,
= 1.27 m
The flowerpot falls 0.84 m off the window height, i.e.
= (1.27 x 0.84 ) m in a time span of
seconds.
Assuming that the speed of the pot just above the window is v then,


![$v=\left(\frac{30}{8}\right) \left[ (1.27 \times 0.84) - \left( \frac{1}{2} \times 9.81 \times \left( \frac{8}{30 \right)^2 \right) \right]}$](https://tex.z-dn.net/?f=%24v%3D%5Cleft%28%5Cfrac%7B30%7D%7B8%7D%5Cright%29%20%5Cleft%5B%20%281.27%20%5Ctimes%200.84%29%20-%20%5Cleft%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%209.81%20%5Ctimes%20%5Cleft%28%20%5Cfrac%7B8%7D%7B30%20%5Cright%29%5E2%20%5Cright%29%20%5Cright%5D%7D%24)
m/s
Initially the pot was dropped from rest. So, u = 0.
If it has fallen from a height of h above the window then,


h = 0.37 m
Answer:
because they are same and their properties
2 mins for sure depending on the distance for walking
Explanation:
MA of a machine is its mechanical advantage.
Mechanical advantage is the ability of a machine to multiply force so as to get a work done.
- This is done by minimizing effort and maximizing the load or output.
- A MA of a simple machine with a value of 3 suggests that such a machine will multiply input force by a factor of 3.
- Therefore, such a machine will amplify the force input into the system.
Answer:
the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°
Explanation:
Given the data in the question and as illustrated in the diagram below.
speed of the ship v = 0.90c
base of the ladder from the wall x₀ = 3.0 m
top of the later above the floor y = 4.0 m
we determine angle θ.
from the diagram,
tanθ = y/x₀
tanθ = y / x₀√( 1 - v²/c² )
we substitute
tanθ = 4.0 / 3.0√( 1 - ((0.9c)²/c²) )
tanθ = 4.0 / 3.0√( 1 - ((0.9²)c²/c²) )
tanθ = 4.0 / 3.0√( 1 - (0.9²) )
tanθ = 4.0 / 3.0√( 1 - 0.81 )
tanθ = 4.0 / 3.0√0.19
tanθ = 4.0 / 1.30766968
tanθ = 3.058876
θ = tan⁻¹( 3.058876 )
θ = 71.8965 ≈ 71.9°
Therefore, the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°