Answer:

Explanation:
From the given information, since the molecular mass of the ion M+ is not given;
Let's assume M+ = 58.0423
So, by applying the 13th rule;
we will need to divide the mass by 13, after dividing it;
The quotient n = no. of carbon; &
The addition of the quotient (n) with the remainder r = no. of hydrogen.
So;

So;


From the given information; we have oxygen present, so since the mass of oxygen = 16, we put oxygen in the molecular formula by removing
. Also, since the mass is an even number then Nitrogen is 0.
So, we have:

Answer:
The value of dissociation constant of the monoprotic acid is
.
Explanation:
The pH of the solution = 2.46
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![2.46=-\log[H^+]](https://tex.z-dn.net/?f=2.46%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=0.003467 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.003467%20M)

Initially
0.0144 0 0
At equilibrium
(0.0144-x) x x
The expression if an dissociation constant is given by :
![K_a=\frac{[A^-][H^+]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D)

![x=[H^+]=0.003467 M](https://tex.z-dn.net/?f=x%3D%5BH%5E%2B%5D%3D0.003467%20M)


The value of dissociation constant of the monoprotic acid is
.
Is bubble chamber one of your choices? Bubble chamber sounds like a good fit for the question.
Answer:
5.625 moles of oxygen, O₂.
Explanation:
The balanced equation for the reaction is given below:
4Al + 3O₂ —> 2Al₂O₃
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ required to react with 7.5 moles of aluminum, Al. This can be obtained as illustrated below:
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Therefore, 7.5 moles of Al will react with = (7.5 × 3)/4 = 5.625 moles of O₂.
Thus, 5.625 moles of O₂ is needed for the reaction.
In earths surface or the bottom of the Ocean