Answer:
D, E and F
Explanation:
About tetrachloro cobalt complexes, the following facts have been observed
- Color of the tetrachloro cobalt complexes is blue.
- They do not decompose on heating that means synthesis of tetra chloro is endothermic.
About hexa aqua cobalt complexes, the following facts have been observed
- Color of the hexa aqua cobalt complexes is pink color.
- They decompose on heating and remain stable on cooling that means process of synthesis of hexa aqua cobalt complexes is exothermic.
Based on above, the correct statements are:
The correct is chloro cobalt complex is blue and aqua cobalt
complex is pink.
The chloro complex is favored by heating.
If the chloro complex is a product, then the reaction must be endothermic.
The correct options are D, E and F.
Answer:
"If you lower the kinetic energy of a gas its temperature will decrease because temperature is a measure of the average kinetic energy of a substance."
Explanation:
Answer:
96.09 g/mol
Explanation:
You just need to first get the atomic weights of the elements involved. You can easily get these from your periodic table.
If you are going to do this properly, please use the weight with at least two decimal places for accuracy (e.g. 15.99 g/mol).
Also, please take note that I will be using the unit g/mol for all the weights. Thus,
Step 1
N = 14.01 g/mol
H = 1.008 g/mol
O = 16.00 g/mol
C = 12.01 g/mol
Since your compound is
(
N
H
4
)
2
C
O
3
, you need to multiply the atomic weights by their subscripts. Therefore,
Step 2
N = 14.01 g/mol × 2 =
28.02 g/mol
H = 1.008 g/mol × (4×2) =
8.064 g/mol
O = 16.00 g/mol × 3 =
48.00 g/mol
C = 12.01 g/mol × 1 =
12.00 g/mol
To get the mass of the substance, we need to add all the weights from Step 2.
Step 3
molar mass of
(
NH
4
)
2
CO
3
=
(28.02 + 8.064 + 48.00 + 12.01) g/mol
=
96.09 g/mol
this is a google search and a example i hope is helps to solve
In a chemical reaction, matter can neither be created nor destroyed, so the products that come out of a reaction must equal the reactants that go into a reaction. Stoichiometry is the measure of the elements within a reaction.[1] It involves calculations that take into account the masses of reactants and products in a given chemical reaction. Stoichiometry is one half math, one half chemistry, and revolves around the one simple principle above - the principle that matter is never lost or gained during a reaction. The first step in solving any chemistry problem is to balance the equation.
<span>
</span>