Answer:
The total work is 4957.45J
Explanation:
For an ideal gas, at constant temperature the definition of work (W) is
![W = - P.dV = - n.R.T \int\limits^i_f {\frac{dV}{V} \\W = - n.R.T. Ln (\frac{V_{f}}{V_{I}})\\W = - n.R.T. Ln (\frac{P_{i}}{P_{f}})](https://tex.z-dn.net/?f=W%20%3D%20-%20P.dV%20%3D%20-%20n.R.T%20%5Cint%5Climits%5Ei_f%20%7B%5Cfrac%7BdV%7D%7BV%7D%20%5C%5CW%20%3D%20-%20n.R.T.%20Ln%20%28%5Cfrac%7BV_%7Bf%7D%7D%7BV_%7BI%7D%7D%29%5C%5CW%20%3D%20-%20n.R.T.%20Ln%20%28%5Cfrac%7BP_%7Bi%7D%7D%7BP_%7Bf%7D%7D%29)
where P is the pressure, V the volume, n the moles number, T the temperature and R the gas constant.
To solve the problem is necessary to replace the two steps in the equation
Stape 1: n = 1 mol, R = 0.082atm.L/K.mol, T = 77ºC = 350K, Pi = 5.50atm and Pf = 2.43atm.
![W_{1} = - 1molx0.082\frac{atm.L}{K.mol}x350KxLn (\frac{5.50atm}{2.43atm}) = 23.44atm.Lx101.325\frac{J}{atm.L} =2375.44J](https://tex.z-dn.net/?f=W_%7B1%7D%20%3D%20-%201molx0.082%5Cfrac%7Batm.L%7D%7BK.mol%7Dx350KxLn%20%28%5Cfrac%7B5.50atm%7D%7B2.43atm%7D%29%20%3D%2023.44atm.Lx101.325%5Cfrac%7BJ%7D%7Batm.L%7D%20%3D2375.44J)
Stape 2: n = 1 mol, R = 0.082atm.L/K.mol, T = 77ºC = 350K, Pi = 2.43atm and Pf = 1.00atm.
![W_{2} = - 1molx0.082\frac{atm.L}{K.mol}x350KxLn (\frac{2.43atm}{1.00atm}) = 25.48atm.Lx101.325\frac{J}{atm.L} =2582.01J](https://tex.z-dn.net/?f=W_%7B2%7D%20%3D%20-%201molx0.082%5Cfrac%7Batm.L%7D%7BK.mol%7Dx350KxLn%20%28%5Cfrac%7B2.43atm%7D%7B1.00atm%7D%29%20%3D%2025.48atm.Lx101.325%5Cfrac%7BJ%7D%7Batm.L%7D%20%3D2582.01J)
The total work is the sum of the two steps
![W = W_{1} + W_{2} = 2375.44J + 2582.01J = 4957.45J](https://tex.z-dn.net/?f=W%20%3D%20W_%7B1%7D%20%2B%20W_%7B2%7D%20%3D%202375.44J%20%2B%202582.01J%20%3D%204957.45J)