The final temperature of the mixture : 21.1° C
<h3>Further explanation </h3>
The law of conservation of energy can be applied to heat changes, i.e. the heat received / absorbed is the same as the heat released
Q in(gained) = Q out(lost)
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Q ethanol=Q water
mass ethanol=

mass water =

then the heat transfer :

Answer:
4 atmospheric pressure is needed to get a volume of 25 litres
Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.
Answer:
Element Atomic Number Atomic Mass
Nickel 27 58.6934
Cobalt 28 58.9332
Copper 29 63.546
Zinc 30 65.39
Explanation:
Answer: The final pressure will decrease ad the value is 85 kPa
Explanation:
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the final pressure will decrease ad the value is 85 kPa