Answer:
Most substituted alkene is produced as a major product
Explanation:
- Dehydration of 3-methyl-2-butanol proceeds through E1 mechanism to form alkenes.
- Most substituted alkene is produced as major product because of presence of highest number of hyperconjugative hydrogen atoms corresponding to the produced double bond (Saytzeff product).
- Here, a H-shift also occurs in one of the intermediate step during dehydration to produce more stable tertiary carbocation.
- Reaction mechanism has been shown below.
Answer:
Aluminum, boron, and gallium are likely together in one group because they have the same number of valence electrons, and carbon and germanium are likely together in another group because they have the same number of valence electrons.
Explanation:
Answer:
4.68x10²⁵ ions of Na⁺
Explanation:
First of all, we dissociate the salt:
NaCl(aq) → Na⁺(aq) + Cl⁻(aq)
An aqueous solution of NaCl dissociates in chlorides anions and sodium cations. Ratio is 1:1, per 1 mol of NaCl, we have 1 mol of Na⁺
We determine the moles of salt: 4543.3 g . 1mol / 58.45 g = 77.7 moles
77.7 moles are the amount of NaCl, therefore we have 77.7 moles of Na⁺.
We count the ions:
1 mol fo Na⁺ has 6.02x10²³ ions
77.7 moles of Na⁺ must have (77.7 . 6.02x10²³) / 1 = 4.68x10²⁵ ions of Na⁺
A catalyst is a chemical that increases the rate of a chemical reaction without itself being changed by the reaction. The fact that they aren't changed by participating in a reaction distinguishes catalysts from substrates, which are the reactants on which catalysts work. Enzymes catalyze biochemical reactions.
Answer:
A. The neutrons and electrons are in the wrong place.
Explanation:
The atom's nucleus contains both protons and neutrons, whilst the electrons are arranged in shells around the nucleus.