The ice sculpture would take longer to melt than the ice cube
Answer: ΔH for the reaction is -277.4 kJ
Explanation:
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times \Delta H(products)]-\sum [n\times \Delta H(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28products%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28reactant%29%5D)
![\Delta H=[(n_{CCl_4}\times \Delta H_{CCl_4})+(n_{HCl}\times B.E_{HCl}) ]-[(n_{CH_4}\times \Delta H_{CH_4})+n_{Cl_2}\times \Delta H_{Cl_2}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BCCl_4%7D%5Ctimes%20%5CDelta%20H_%7BCCl_4%7D%29%2B%28n_%7BHCl%7D%5Ctimes%20B.E_%7BHCl%7D%29%20%5D-%5B%28n_%7BCH_4%7D%5Ctimes%20%5CDelta%20H_%7BCH_4%7D%29%2Bn_%7BCl_2%7D%5Ctimes%20%5CDelta%20H_%7BCl_2%7D%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta H=[(1\times -139)+(1\times -92.31) ]-[(1\times -74.87)+(1\times 121.0]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%281%5Ctimes%20-139%29%2B%281%5Ctimes%20-92.31%29%20%5D-%5B%281%5Ctimes%20-74.87%29%2B%281%5Ctimes%20121.0%5D)

Therefore, the enthalpy change for this reaction is, -277.4 kJ
Solids have a definite shape, and a definite volume.
Liquids have a definite volume, but have no definite shape.
Gas have neither a definite volume nor a definite shape.
Hope this helps!
Answer:
Multiply the number of moles in the product by the molecular weight of the product to determine the theoretical yield.
Explanation:
For example:
If you created 0.5 moles of Aluminium Oxide the molecular weight of Aluminium Oxide is 101.96g/mole, so you would get 50.98g as the theoretical yield.
So multiply,..
101.96x0.5= 50.98
This is the correct way to calculate the theoretical yield
......