Find the limit: 20%2B%20ax%29%20%2B%201%20-%20%28x%5E%7B2%7D%20-%202x%20%2B%201%29%7D%7Bax%7D" id="TexFormula1" title="\lim_{a x \to 0} \frac{(x + ax)^{2}-2(x + ax) + 1 - (x^{2} - 2x + 1)}{ax}" alt="\lim_{a x \to 0} \frac{(x + ax)^{2}-2(x + ax) + 1 - (x^{2} - 2x + 1)}{ax}" align="absmiddle" class="latex-formula">
2 answers:
Answer:
2x-2
Step-by-step explanation:
lim ax goes to 0 ( x+ ax)^2 -2 ( x+ax) +1 - ( x^2 -2x+1)
--------------------------------------------------
ax
Simplify the numerator by foiling the first term and distributing the minus signs
x^2+ 2ax^2 + a^2 x^2 -2x-2ax +1 - x^2 +2x-1
--------------------------------------------------
ax
Combine like terms
2ax^2 + a^2 x^2 -2ax
--------------------------------------------------
ax
Factor out ax
ax( 2x + ax -2)
----------------------
ax
Cancel ax
2x + ax -2
Now take the limit
lim ax goes to 0 ( 2x + ax -2)
2x +0-2
2x -2
I'll let <em>h</em> = <em>ax</em>, so the limit is
i.e. the derivative of .
Expand the numerator to see several terms that get eliminated:
So we have
Since <em>h</em> ≠ 0 (because it is approaching 0 but never actually reaching 0), we can cancel the factor of <em>h</em> in both numerator and denominator, then plug in <em>h</em> = 0:
You might be interested in
1+2 that what it is im juts joking idek how to solve that
Oooohhhhhhhhh Oooommmgggg Brooooo
Kfjfnfjfjdjjdjdjzjkdmkmdmmfmx
Answer:
between 180 and 365 cuz it's a reflex angle
Answer:
x=22/p
Step-by-step explanation:
1. Add 18 to 4
2. px=22
3. Divide by p to isolate x
4. 22/p=x