Answer:
Theories
Explanation:
It is theories because it was a generalistee abstract or thinking generalising the principle of fact about Earth tectonic plates ,it was formulated and concluded as plate tectonic theories after many findings. The theories conclude that the Earth has an outer layer called lithosphere and lies overly a plastic layer called asthenosphere. The lithosphere is divided into several plates and they move close to each other where they diverge, converge or slip over one another.
Answer: released to; absorbed from
- In an exothermic reaction, energy is released to the surroundings.
- In an endothermic reaction, energy is absorbed from the surroundings.
Explanation:
An exothermic reaction is a chemical reaction that occurs spontaneously and brings about the release of energy to the surroundings. Hence, the reacting vessel feels hot as the reaction proceeds.
An endothermic reaction, on the other hand, does not occur spontaneously and proceed only when energy is absorbed from the surroundings. Hence, the reacting vessel feels cold as the reaction proceeds.
Friction actually generated friction because you create charges that are dealing with electricity. When you rub some against each other , you can create a little spark which is electricity . Friction can produce static or something because it can be transferred by two or more items .
The four ionic species initially in solution are Na⁺, PO₄³⁻, Cr³⁺, and Cl⁻. Since the precipitate is composed of Cr³⁺ and PO₄³⁻ ions, the spectator ions must be Na⁺ and Cl⁻.
The complete ionic equation is 3Na⁺(aq) + PO₄³⁻(aq) + Cr₃⁺(aq) + 3Cl⁻(aq) → 3Na⁺(aq) + 3Cl⁻(aq) + CrPO₄(s).
So the balanced <u>net ionic equation</u> for this reaction would be Cr³⁺(aq) + PO₄³⁻(aq) → CrPO₄(s).
Answer:
The molarity of this final solution is 0.167 M
Explanation:
Step 1: Data given
Volume of a 0.100 M HNO3 solution = 50.0 mL
Volume of a 0.200 M HNO3 = 100.0 mL
Step 2: Calculate moles
The final molarity must lie between 0.1M and 0.2M
Moles = molarity * volume
Moles HNO3 in 50mL of a 0.100M solution = 0.05 L *0.100 M = 0.005 mol
Moles HNO3 in 100mL of a 0.200M solution = 0.100 L*0.200 = 0.020mol
total moles = 0.005+0.020 = 0.025 moles in 150mL solution = 0.150L
Step 3: Calculate molarity of final solution
Molarity = mol / volume
Molarity 0.025 moles /0.150 L
Molarity = 0.167M
The molarity of this final solution is 0.167 M