Answer:
Explanation:
The algebraic sum of all the oxidation numbers of all atoms in a neutral compound is zero.
In order to know the formula of the negative Sulfur ion in pyrite, we must determine its oxidation state.
Let us make the make the oxidation number of sulfur = x
Therefore, FeS₂:
+2 +2x = 0
+2 = -2x
x = -1
The formula of the negative ion is S⁻
Answer:
girlll we got da same question we need help
11 a- ions would exist in the solution, they can carry charges.
B-solids that are neutral, they wouldn't conduct much of a current.
Answer:
![[Ag^+]=2.82x10^{-4}M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%3D2.82x10%5E%7B-4%7DM)
Explanation:
Hello there!
In this case, for the ionization of silver iodide we have:
![AgI(s)\rightleftharpoons Ag^+(aq)+I^-(aq)\\\\Ksp=[Ag^+][I^-]](https://tex.z-dn.net/?f=AgI%28s%29%5Crightleftharpoons%20Ag%5E%2B%28aq%29%2BI%5E-%28aq%29%5C%5C%5C%5CKsp%3D%5BAg%5E%2B%5D%5BI%5E-%5D)
Now, since we have the effect of iodide ions from the HI, it is possible to compute that concentration as that of the hydrogen ions equals that of the iodide ones:
![[I^-]=[H^+]=10^{-3.55}=2.82x10^{-4}M](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D%5BH%5E%2B%5D%3D10%5E%7B-3.55%7D%3D2.82x10%5E%7B-4%7DM)
Now, we can set up the equilibrium expression as shown below:

Thus, by solving for x which stands for the concentration of both silver and iodide ions at equilibrium, we have:
![x=[Ag^+]=2.82x10^{-4}M](https://tex.z-dn.net/?f=x%3D%5BAg%5E%2B%5D%3D2.82x10%5E%7B-4%7DM)
Best regards!
The volume measured using such a cylinder will be reported to the nearest 10th mL.
<h3>Cylinder graduation</h3>
10 mL graduated cylinders are always read to the nearest two decimal places.
100 mL graduated cylinders are always read to the nearest 1 decimal place. The nearest 1 decimal place is the same thing as the nearest 10th.
Thus, a reading made using a 100mL increment graduated cylinder would be reported to the nearest 10th mL.
More on cylinder graduation can be found here: brainly.com/question/14427988
#SPJ1