The wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
<em>"Your question is not complete, it seems to be missing the diagram of the emission spectrum"</em>
the diagram of the emission spectrum has been added.
<em>From the given</em><em> chart;</em>
The wavelength of the atomic emission corresponding to the orange line is 610 nm = 610 x 10⁻⁹ m
The frequency of this emission is calculated as follows;
c = fλ
where;
- <em>c is the speed of light = 3 x 10⁸ m/s</em>
- <em>f is the frequency of the wave</em>
- <em>λ is the wavelength</em>

The energy of the emitted photon corresponding to the orange line is calculated as follows;
E = hf
where;
- <em>h is Planck's constant = 6.626 x 10⁻³⁴ Js</em>
<em />
E = (6.626 x 10⁻³⁴) x (4.92 x 10¹⁴)
E = 3.26 x 10⁻¹⁹ J.
Thus, the wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
Learn more here:brainly.com/question/15962928
22.7 liters
The molar volume of an ideal gas depends on the temperature and pressure. One mole of any ideal gas occupies 22.7 liters at 0 0C and 1 bar (STP).
Hope this helped
The molality of the solution is 0.00037 m.
<h3>What is concentration?</h3>
The term concentration refers to the amount of solute in a solution.
We have the following information;
Molarity = 0.335 M
Density = 1.0432 g/mL
Temperature = 20 o C
The molality of the solution is obtained from;
m = 0.335 M × 1.0432 g/mL/ 1000(1.0432 g/mL) - 0.335 M (342 g/mol)
m = 0.344/1043.2 - 114.57
m = 0.344/928.63
m = 0.00037 m
Learn more about molality of solution: brainly.com/question/4580605
74.62 g of magnesium oxide is formed from 45.00 g magnesium so 74.62-45.00= 29.62 g of oxygen is consumed or in other words a new compound is formed in the burning of magnesium in oxygen with a heavier mass than the pure magnesium.