Answer:
See explanation
Explanation:
Before the advent of the wave-particle duality theory proposed by Louis de Broglie, there was a sharp distinction between mater and waves.
However, Louis de Broglie introduced the idea that mater could display wave-like properties. Erwin Schrödinger developed this idea into what is now known as the wave mechanical model of the atom.
In this model, electrons are regarded as waves. We can only determine the probability of finding the electron within certain high probability regions within the atom called orbitals.
This idea has been the longest surviving atomic model and has greatly increased our understanding of atoms.
Answer: 670K
Explanation:
Given that,
Original volume of gas V1 = 1.22 L
Original temperature T1 = 286 K
New volume V2 = 2.86 L
New temperature T2 = ?
Since volume and temperature are involved while pressure is constant, apply the formula for Charles law
V1/T1 = V2/T2
1.22 L/286 K = 2.86 L/ T2
Cross multiply
1.22 L x T2 = 286 K x 2.86 L
1.22T2 = 817.96
Divide both sides by 1.22
1.22T2/1.22 = 817.96/1.22
T2 = 670.459 K (Round to the nearest whole number as 670 K)
Thus, the temperature of the gas is 670 Kelvin
They do not show the same season. one is faced a different part of the sun
First we have to find Ka1 and Ka2
pKa1 = - log Ka1 so Ka1 = 0.059
pKa2 = - log Ka2 so Ka2 = 6.46 x 10⁻⁵
Looking at the values of equilibrium constants we can see that the first one is really big compared to second one. so, the pH will be affected mainly by the first ionization of the acid.
Oxalic acid is H₂C₂O₄
H₂C₂O₄ ⇄ H⁺ + HC₂O₄⁻
0.0356 M 0 0
0.0356 - x x x
Ka1 =
![\frac{[H^+][HC2O4^-]}{[H2C2O4]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BH%5E%2B%5D%5BHC2O4%5E-%5D%7D%7B%5BH2C2O4%5D%7D%20)
= x² / 0.0356 - x
x = 0.025 M
pH = - log [H⁺] = - log (0.025) = 1.6
The reactivity of a metal is determined by how tightly the metal holds onto the electrons in the outermost energy levels (valence electrons)