Answer:
Epx= - 21.4N/C
Epy= 19.84N/C
Explanation:
Electric field theory
The electric field at a point P due to a point charge is calculated as follows:
E= k*q/r²
E= Electric field in N/C
q = charge in Newtons (N)
k= electric constant in N*m²/C²
r= distance from load q to point P in meters (m)
Equivalences
1nC= 10⁻⁹C
known data
q₁=-2.9nC=-2.9 *10⁻⁹C
q₂=5nC=5 *10⁻⁹C
r₁=0.840m



Calculation of the electric field at point P due to q1
Ep₁x=0

Calculation of the electric field at point P due to q2


Calculation of the electric field at point P(0,0) due to q1 and q2
Epx= Ep₁x+ Ep₂x==0 - 21.4N/C =- 21.4N/C
Epy= Ep₁y+ Ep₂y=36.95 N/C-17.11N =19.84N/C
On the regular ground, water usually seeps in to the soil, which has a number of benefits for the wildlife in that area. However, with asphalt and concrete, there is no soft and absorbent soil to take in the water, so it just keeps flowing down to the lowest part of land it can. Additionally, some water runoff can carry fertilizer and other harmful chemicals with it in to the oceans and lakes it’s dumped in, which harms the ecosystem in them as well.
Destructive interference occurs when path difference = ½-integer
multiple of the wavelength i.e. Minima in diffraction pattern given by,
= ! +
# λ = !1 +
# λ = 3λ/2
m