1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
3 years ago
9

Suppose a rocket ship accelerates upwards with acceleration equal in magnitude to twice the magnitude of g (we say that the rock

et ship accelerations upwards at 2g), but runs out of fuel after 100 seconds, after which point it stops accelerating upward. At this point, the rocket begins accelerating downwards with a magnitude of g. Assume that the gravitational pull of the Earth on the rocket doesn't change with altitude.
a) How high above the surface of the Earth does the rocket travel before it stops accelerating?
b) How fast is the rocket going when it stops accelerating?
c) How high does the rocket get before it begins to fall back to Earth?
d) How long after launch does the rocket strike the Earth again?
e) What is the average velocity of the rocket between when it leaves the Earth and when it strikes the Earth again?
Physics
1 answer:
pashok25 [27]3 years ago
8 0

Answer:

a) s_a=98100\ m is the height where the rocket stops accelerating and its fuel is finished and starts decelerating while it still continues to move in the upward direction.

b) v_a=1962\ m.s^{-1} is speed of the rocket going when it stops accelerating.

c) H=294300\ m

d) t_T=544.95\ s

e) Zero, since the average velocity is the net displacement per unit time and when the rocket strikes back the earth surface the net displacement is zero.

Explanation:

Given:

acceleration of rocket, a=2g=2\times 9.81=19.62\ m.s^{-2}

time for which the rocket accelerates, t_a=100\ s

<u>For the course of upward acceleration:</u>

using eq. of motion,

s_a=ut+\frac{1}{2}at_a^2

where:

u= initial velocity of the rocket at the launch =0

s_a= height the rocket travels just before its fuel finishes off

so,

s_a=0+\frac{1}{2}\times 19.62\times 100^2

a) s_a=98100\ m is the height where the rocket stops accelerating and its fuel is finished and starts decelerating while it still continues to move in the upward direction.

<u>Now the velocity of the rocket just after the fuel is finished:</u>

v_a=u+at_a

v_a=0+19.62\times 100

b) v_a=1962\ m.s^{-1} is speed of the rocket going when it stops accelerating.

After the fuel is finished the rocket starts to decelerates. So, we find the height of the rocket before it begins to fall back towards the earth.

Now the additional height the rocket ascends before it begins to fall back on the earth after the fuel is consumed completely, at this point its instantaneous velocity is zero:

using equation of motion,

v^2=v_a^2-2gh

where:

g= acceleration due to gravity

v= final velocity of the rocket at the top height

0^2=1962^2-2\times 9.81\times h

h=196200\ m

c) So the total height at which the rocket gets:

H=h+s

H=196200+98100

H=294300\ m

d)

Time taken by the rocket to reach the top height after the fuel is over:

v=v_a+g.t

0=1962-9.81t

t=200\ s

Now the time taken to fall from the total height:

H=v.t'+\frac{1}{2}\times gt'^2

294300=0+0.5\times 9.81\times t'^2

t'=244.95\ s

Hence the total time taken by the rocket to strike back on the earth:

t_T=t_a+t+t'

t_T=100+200+244.95

t_T=544.95\ s

e)

Zero, since the average velocity is the net displacement per unit time and when the rocket strikes back the earth surface the net displacement is zero.

You might be interested in
A 1300-N crate rests on the floor. How much work is required to move it at constant speed (a)
kherson [118]

a) The work done is 920 J

b) The work done is 5200 J

Explanation:

a)

In this first part of the problem, the crate is moved horizontally at constant speed.

The work required in this case is given by

W=Fd cos \theta

where

F is the magnitude of the force applied

d is the displacement of the crate

\theta is the angle between the direction of the force and of the displacement

Here the crate is moved at constant speed: this means that the acceleration of the crate is zero, and so according to Newton's second law, the net force on the crate is zero: this means that the force applied, F, must be equal to the force of friction (but in opposite direction), so

F = 230 N

The displacement is

d = 4.0 m

And the angle is \theta=0^{\circ}, since the force is applied horizontally. Therefore, the work done is

W=(230)(4.0)(cos 0^{\circ})=920 J

b)

In this case, the crate is moved vertically. The force that must be applied to lift the crate must be equal to the weight of the crate (in order to move it a constant speed), therefore

F = W = 1300 N

The displacement this time is again

d = 4.0 m

And the angle is \theta=0^{\circ}, since the force is applied vertically, and the crate is moved also vertically. Therefore, the work done on the crate this time is

W=(1300)(4.0)(cos 0^{\circ})=5200 J

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

4 0
3 years ago
A 1.120 kg car is traveling with a speed of 40 m/s. find its energy
Aleonysh [2.5K]

Answer:

896 kJ

Explanation:

KInetic Energy = 1/2 m v^2

                         = 1/2 (1120)(40^2) = 896 000 J    or  896 kJ

4 0
2 years ago
An object moves 2.5 m. This is an example of a _______. Question 3 options: direction distance velocity speed
Hitman42 [59]
Distance, since distance represents how far something has travelled, which would be in our case 2.5m.
5 0
3 years ago
Read 2 more answers
Jane is sliding down a slide. What kind of motion is she demonstrating?
Over [174]
When Jane is sliding down a slide, she is demonstrating translational motion. 
5 0
3 years ago
The law of inertia applies to objects
Anestetic [448]

Answer:

<em>at</em><em> </em><em>rest</em><em> </em><em>and</em><em> </em><em>in</em><em> </em><em>motion</em>

Explanation:

<em>The</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>inertia</em><em> </em><em>applies</em><em> </em><em>to</em><em> </em><em>objects</em><em> </em><em>at</em><em> </em><em>rest</em><em> </em><em>and</em><em> </em><em>in</em><em> </em><em>motion</em>

6 0
3 years ago
Read 2 more answers
Other questions:
  • Draw a free-body diagram for the ear of a person properly wearing a mask. You may wish to refer to the figure
    13·1 answer
  • a cylindrical jar is 10cm long and has a cross sectional area of 36cm. if it is completely filled with a fluid of relative densi
    15·1 answer
  • Which of the following is not a synthesis reaction?
    14·1 answer
  • 2. Calculate the slope of the line in your graph of the square of the period of the pendulum vs. length of the string .Galileo f
    15·1 answer
  • Suppose a baseball pitcher throws the ball to his catcher.
    8·1 answer
  • A dolphin in an aquatic show jumps straight up out of the water at a velocity of 15.0 m/s. (a) List the knowns in this problem.
    5·1 answer
  • (a) What is the angular speed ω about the polar axis of a point on Earth's surface at a latitude of 55° N? (Earth rotates about
    12·1 answer
  • A glass of water sitting in direct sunlight evaporates over time. Explain this phase change in terms of the types of heat transf
    7·2 answers
  • Question below in photos!!(there are 2 photos) Please answer! Will mark BRAINLIEST! ⬇⬇⬇⬇⬇⬇⬇
    10·1 answer
  • A sound wave has a frequency of 250 Hz and a wavelength of 2.5 m. What is the speed of the wave?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!