I’m pretty sure it’s in a group (column) of the period table. Hope this helps :)))
Answer:
53.2
Explanation:
The balanced reaction is:
2Fe(s) + 3O₂(g) → Fe₂O₃
It means that 3 moles of oxygen form 1 mol of iron(III) oxide. The molar masses are: Fe = 55.8 g/mol and O = 16 g/mol. So
O₂ = 2x 16 = 32 g/mol
Fe₂O₃ = 2x55.8 + 3x16 = 159.6 g/mol
So, 32 g of O₂ corresponds to 1 mol of O₂. The stoichiometry calculus must be (always in moles):
3 mol of O₂ ------------------------ 1 mol of Fe₂O₃
1 mol of O₂ ------------------------ x
By a direct simple three rule:
3x = 1
x = 1/3 mol of Fe₂O₃
The mass is the molar mass multiplied by the number of moles, so:
m = 159.6x (1/3)
m = 53.2 g iron (III) oxide.
Answer:
328 ml
Explanation:
We have given final volume =575.2 ml=0.575 L
Final concentration = 0.8012 M
We know that moles of copper(II) nitrate = final volume ×final concentration =0.8012×.0575=0.4606 moles
We have to find initial volume
So initial volume
Answer:
2 mol NO2
Explanation:
3NO2(g)+H2O(l)→2HNO3(l)+NO(g)
from reaction 3 mol 1 mol
given 11 mol 3 mol
for 3 mol NO2 ----- 1 mol H2O
for x mol NO2 ----- 3 mol H2O
3:x = 1:3
x = 3 *3/1 = 9 mol NO2
So, for 3 mol H2O are needed only 9 mol NO2.
But we have 11 mol NO2. So, NO2 is in excess, and
11 mol NO2 - 9 mol NO2 = 2 mol NO2 will be left after reaction.
Answer:
Oxygen atoms form two double bonds in silicon(IV) oxide.
Silicon(IV) oxide has a high melting point.
Explanation:
Silicon dioxide is structurally analogous to carbon dioxide in the sense that it also contains two oxygen atoms that are double bonded to silicon the central atom in the molecule.
Silicon dioxide has a very high melting point of about 1710 degrees centigrade because of its large macromolecular structure which requires much energy to break such intermolecular interactions.