The question is as follows: What is the% m / m of a solution in which 22 g of solute are dissolved in 44 g of solvent?
Answer: The% m/m of a solution in which 22 g of solute are dissolved in 44 g of solvent is 50%.
Explanation:
Given: Mass of solute = 22 g
Mass of solvent = 44 g
The percentage m/m is calculated using the following formula.

Substitute the values into above formula as follows.

Thus, we can conclude that the% m/m of a solution in which 22 g of solute are dissolved in 44 g of solvent is 50%.
Answer: A yellowy-green dense gas with a choking smell. Chlorine kills bacteria – it is a disinfectant. It is used to treat drinking water and swimming pool water. It is also used to make hundreds of consumer products from paper to paints, and from textiles to insecticides.
Explanation: hope this helps u! HAppy Holidays!
A water molecule consists of three atoms; an oxygen atom and two hydrogen atoms, which are bond together like little magnets.
An iron pot is made up of only one substance, iron. Iron is an element classified as a transition metal
Iron. Elementsare pure substances that are made up of one kind of atom. Pizza is not an element because it is a mixture of many substances. Water is a pure substance, but it contains two kindsof atom: oxygen and hydrogen.
<u>Answer:</u> The
for the reaction is 72 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)
( × 2)
(3)
( × 2)
The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[2\times (-\Delta H_2)]+[2\times (\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B2%5Ctimes%20%28-%5CDelta%20H_2%29%5D%2B%5B2%5Ctimes%20%28%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-1184))+(2\times -(-234))+(2\times (394))]=72kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-1184%29%29%2B%282%5Ctimes%20-%28-234%29%29%2B%282%5Ctimes%20%28394%29%29%5D%3D72kJ)
Hence, the
for the reaction is 72 kJ.