The magnitude of the force on the charge by the influence of the magnetic field will be 6.6*10^-3 N
<h3>What is magnetic force?</h3>
Magnetic force, attraction or repulsion that arises between electrically charged particles because of their motion.The magnitude of the magnetic force acting on the charge is given by:

where
The magnitude of the charge 
The velocity of the charge 
The magnitude of the magnetic field 
The angle between the directions of v and B 
By substituting the values we will get:


Hence the magnitude of the force on the charge by the influence of the magnetic field will be 6.6*10^-3 N
To know more about Magnetic force follow
brainly.com/question/14411049
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Answer:
<u>Magnitude</u>
Explanation:
Each value in nature has a number part, called its magnitude and a dimension called its unit.
For example,
The length of an object is 10 cm. It means that 10 shows the magnitude of length and cm shows its unit.
Answer:
20.7 s
Explanation:
The equation to calculate the velocity for a uniform acceleration a, time t and initial velocity v₀:
v = a*t + v₀
Solve for t:
t = (v - v₀)/a
Answer:When the length of a string is changed, it will vibrate with a different frequency.Shorter strings have higher frequency and therefore higher pitch.