To solve this problem, we must take two important steps. First we will convert all the given units, to international system. Later we will define the torque, which is given as the product between the radius of application of the force and the Force acting on the body. Mathematically the latter is,

Here,
r = Radius
F = Force
Now the units,

Replacing,


Therefore the torque that the muscle produces on the wrist is 
Answer:
the answer is A.) -1 * 10^3[N]
Explanation:
The solution consists of two steps, the first step is using the following kinematic equation:
![v=v_{i} +a*t\\where:\\v=final velocity [m/s]\\v_{i}=initial velocity [m/s]\\a=acceleration[m/^2]\\t=time[s]\\](https://tex.z-dn.net/?f=v%3Dv_%7Bi%7D%20%2Ba%2At%5C%5Cwhere%3A%5C%5Cv%3Dfinal%20velocity%20%5Bm%2Fs%5D%5C%5Cv_%7Bi%7D%3Dinitial%20velocity%20%5Bm%2Fs%5D%5C%5Ca%3Dacceleration%5Bm%2F%5E2%5D%5C%5Ct%3Dtime%5Bs%5D%5C%5C)
The initial velocity is 10 [m/s], and the final velocity is zero because the car stops in 0.5[s].
Replacing:
![0=10+a*(0.5)\\a=-20[m/s^2]](https://tex.z-dn.net/?f=0%3D10%2Ba%2A%280.5%29%5C%5Ca%3D-20%5Bm%2Fs%5E2%5D)
Now in the second part, we need to use the second law of Newton, this law relates the forces with the acceleration of a body.
In the moment when the car stops suddenly the driver will feel the force of the seatbelt acting in the opposite direction of the movement.
![F=m*a\\F=50[kg]*(-20[m/s^2])\\units\[kg]*[m/s^2]=[N]\\F=-1000[N] or -1*10^{3} [N]](https://tex.z-dn.net/?f=F%3Dm%2Aa%5C%5CF%3D50%5Bkg%5D%2A%28-20%5Bm%2Fs%5E2%5D%29%5C%5Cunits%5C%5Bkg%5D%2A%5Bm%2Fs%5E2%5D%3D%5BN%5D%5C%5CF%3D-1000%5BN%5D%20or%20-1%2A10%5E%7B3%7D%20%5BN%5D)
The minus sign means that the force is acting in the opposite direction of the movement.
The answer is c, because ball is falling so its gravitationl potential energy decreases, but it kinetic energy increases. Energy is always conserved.
False hdhsbsbsbjsjsndndbxhsisj
Answer:
The speed will be "18km/s". A further explanation is given below.
Explanation:
According to the question, the values are:
Wavelength,



As we know,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
⇒ 
or,
⇒ 