Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Here as we know that there is no loss of energy
so we can say that maximum kinetic energy will become gravitational potential energy at its maximum height
So here we have

here we have
v = 20 m/s
m = 8000 kg
now from above equation we have



so maximum height is 20.4 m
Answer;
The above statement is true.
-A photograph is taken by letting light fall on a light-sensitive medium, which then records the image onto that medium.
Explanation;
-A photograph is created when light is allowed to fall on a light-sensitive medium. The pattern of light creates an image that is recorded by the photographic device. How light or dark a photograph is depends on how much light was allowed to fall on the light-sensitive medium.
-A camera is a light-tight box that contains a light-sensitive material or device and a way of letting in a desired amount of light at particular times to create an image on the light-sensitive material.
Answer:
Perpendicular to the surface
Explanation:
- Electric field lines represent the direction of the electric field. The electric field lines also correspond to the direction along which the gradient of the electric potential is maximum.
- Equipotentials are lines or surfaces along which the electric potential is constant: the electric potential does not change moving along an equipotential surface.
Given the two definitions, equipotential lines are always perpendicular to the electric field lines. Therefore, in this problem, the direction of the electric field is perpendicular to the spherical equipotential surface.
Answer:

Explanation:
According to the free-body diagram of the system, we have:

So, we can solve for T from (1):

Replacing (3) in (2):

The electric force (
) is given by the Coulomb's law. Recall that the charge q is the same in both spheres:

According to pythagoras theorem, the distance of separation (r) of the spheres are given by:

Finally, we replace (5) in (4) and solving for q:
