Answer:
Strong acids are assumed 100% dissociated in water- True
As a solution becomes more basic, the pOH of the solution increases- false
The conjugate base of a weak acid is a strong base- true
The Ka equilibrium constant always refers to the reaction of an acid with water to produce the conjugate base of the acid and the hydronium ion- True
As the Kb value for a base increases, base strength increases- true
The weaker the acid, the stronger the conjugate base- true
Explanation:
An acid is regarded as a strong acid if it attains 100% or complete dissociation in water.
The pOH decreases as a solution becomes more basic (as OH^- concentration increases).
Ka refers to the dissociation of an acid HA into H3O^+ and A^-.
The greater the base dissociation constant, the greater the base strength.
The weaker an acid is, the stronger , its conjugate base will be.
The answer is number 4 or the exchange of energy with the surroundings. Calorimetry is a measurement of energy that is formed or absorbed in a certain process. The calorimeter is the instrument used in order to measure the energy. It is recommended that a calorimeter should be a closed system so as to measure precisely the energy and avoid or lessen the exchange of energy with the surroundings. Thus, comparing an open ceramic mug and an insulated mug with a lid, the greatest difference is the energy lost to the surroundings.
Answer:
6.4 g BaSO₄
Explanation:
You have been given the molarity and the volume of the solution. To find the mass of the solution, you need to (1) find the moles BaSO₄ (via the molarity ratio) and then (2) convert moles BaSO₄ to grams BaSO₄ (via the molar mass). It is important to arrange the conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given values.
Molarity (mol/L) = moles / volume (L)
(Step 1)
55 mL / 1,000 = 0.055 L
Molarity = moles / volume <----- Molarity ratio
0.5 (mol/L) = moles / 0.055 L <----- Insert values
0.0275 = moles <----- Multiply both sides by 0.055
(Step 2)
Molar Mass (BaSO₄): 137.33 g/mol + 32.065 g/mol + 4(15.998 g/mol)
Molar Mass (BaSO₄): 233.387 g/mol
0.0275 moles BaSO₄ 233.387 g
--------------------------------- x ------------------- = 6.4 g BaSO₄
1 mole
Molarity after dilution : 0.0058 M
<h3>Further explanation
</h3>
The number of moles before and after dilution is the same
The dilution formula
M₁V₁=M₂V₂
M₁ = Molarity of the solution before dilution
V₁ = volume of the solution before dilution
M₂ = Molarity of the solution after dilution
V₂ = Molarity volume of the solution after dilution
M₁=0.1 M
V₁=6.11
V₂=105.12
![\tt M_2=\dfrac{M_1.V_1}{V_2}=\dfrac{0.1\times 6.11}{105.12}=0.0058~M](https://tex.z-dn.net/?f=%5Ctt%20M_2%3D%5Cdfrac%7BM_1.V_1%7D%7BV_2%7D%3D%5Cdfrac%7B0.1%5Ctimes%206.11%7D%7B105.12%7D%3D0.0058~M)
Here we have to get the
of the reaction at 520 K temperature.
The
of the reaction is 1.705 atm
We know the relation between
and
is
, where
= The equilibrium constant of the reaction in terms of partial pressure,
= The equilibrium constant of the reaction in terms of concentration and N = number of moles of gaseous products - Number of moles of gaseous reactants.
Now in this reaction, PCl₃ + Cl₂ ⇄ PCl₅
Thus number of moles of gaseous product is 1, and number of moles of gaseous reactants are 2. Thus N = |1 - 2| = 1 mole
The given value of
is 4.0×10⁻²
The molar gas constant, R = 0.082 L. Atm. mol⁻¹. K⁻¹ and temperature, T = 520 K.
On plugging the values in the equation we get,
![K_{p} = 4.0 X 10^{-2}(0.082X520)^{1}](https://tex.z-dn.net/?f=K_%7Bp%7D%20%3D%204.0%20X%2010%5E%7B-2%7D%280.082X520%29%5E%7B1%7D)
Or,
= 1.705 atm
Thus, the
of the reaction is 1.705 atm