The many electron diamonds around the central carbon are 1689
To calculate the <span>δ h, we must balance first the reaction:
NO + 0.5O2 -----> NO2
Then we write all the reactions,
2O3 -----> 3O2 </span><span>δ h = -426 kj eq. (1)
O2 -----> 2O </span><span>δ h = 490 kj eq. (2)
NO + O3 -----> NO2 + O2 </span><span>δ h = -200 kj eq. (3)
We divide eq. (1) by 2, we get
</span>O3 -----> 1.5O2 δ h = -213 kj eq. (4)
Then, we subtract eq. (3) by eq. (4)
NO + O3 -----> NO2 + O2 δ h = -200 kj
- (O3 -----> 1.5 O2 δ h = -213 kj)
NO -----> NO2 - 0.5O2 δ h = 13 kj eq. (5)
eq. (2) divided by -2. (Note: Dividing or multiplying by negative number reverses the reaction)
O -----> 0.5O2 <span>δ h = -245 kj eq. (6)
</span>
Add eq. (6) to eq. (5), we get
NO -----> NO2 - 0.5O2 δ h = 13 kj
+ O -----> 0.5O2 δ h = -245 kj
NO + O ----> NO2 δ h = -232 kj
<em>ANSWER:</em> <em>NO + O ----> NO2 δ h = -232 kj</em>
Answer: The molality of solution is 17.6 mole/kg
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.
where,
n = moles of solute
= weight of solvent in kg
moles of acetone (solute) = 0.241
moles of water (solvent )= (1-0.241) = 0.759
mass of water (solvent )=
Now put all the given values in the formula of molality, we get
Therefore, the molality of solution is 17.6 mole/kg