Answer:
The solid sugar crystals break apart in water as the sugar dissolves, but the individual sugar particles or molecules are still present and do not change as a result of dissolving in the water. The combined mass of the sugar and water shouldn't change.
Explanation:
Answer:
(d) 3,7-dimethyl-4-nonyne.
Explanation:
Hello,
In this case, considering the attached picture on which you can see that the main chain has nine carbon atoms, one tripe bond at the fourth carbon and two methyl radicals at the third and seventh carbons respectively, by following the IUPAC rules, the name would be: (d) 3,7-dimethyl-4-nonyne since the chain must start at the side closest to the first triple bond due to its priority and subsequently considering the present radicals.
Best regards.
The group that magnesium is in has all the elements that are alike to it.
Magnesium is in group 2 which is the alkaline earth metals. So elements similar to it would be calcium, beryllium!
----If you need anymore help in chemistry.....just ask me....im very good at chemistry!
Fungus aren’t plants
Also this is what I found in the internet: „Ferns are plants. They look quite similar with lichens (e.g. Lobaria sp.) and like fungi, they bear spores underneath the fronds. However, ferns do not get nourishment from decaying matter ( some fungi species does) but undergoes photosynthesis like other plants.“
<span>Let's </span>assume that the gas has ideal gas behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹)
and T is temperature in Kelvin.<span>
<span>
</span>P = 60 cm Hg = 79993.4 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³
n = ?
<span>
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 25 °C = 298 K
<span>
By substitution,
</span></span>79993.4 Pa<span> x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 298 K<span>
n = 4.0359 x 10</span>⁻³ mol
<span>
Hence, moles of the gas</span> = 4.0359 x 10⁻³ mol<span>
Moles = mass / molar
mass
</span>Mass of the gas = 0.529 g
<span>Molar mass of the gas</span> = mass / number of moles<span>
= </span>0.529 g / 4.0359 x 10⁻³ mol<span>
<span> = </span>131.07 g mol</span>⁻¹<span>
Hence, the molar mass of the given gas is </span>131.07 g mol⁻¹