Answer:
F_n = 5.65E-11 N
d = 1.20682E-31 m
Explanation:
F = 3.8E-09 N
where
m = Mass of electron = 9.109E−31 kilograms
G = Gravitational constant = 6.67E-11 m³/kgs²
x = Distance between them

For 

Dividing the above equations we get

F_n = 5.65E-11 N

d = 1.20682E-31 m
Answer:
A single component that can’t be separated
brainliest please ;)
When the sun, moon, and Earth are lined up (during a new or full moon), the solar tide adds to the lunar tide to produce extremely high tides and very low tides, both of which are known as spring tides.
- Basically describes a situation in astronomy where three celestial bodies align in a straight line as part of a gravitational system. The phrase is frequently used to describe how the Sun, Moon, and Earth are in a straight line.
- The moon is responsible for causing high and low tides. The tidal force is produced by the moon's gravitational pull. Earth and its water protrude outward on both the side that is closest to and farthest from the moon as a result of the tidal force. These watery peaks are high tide
To know more about high tides
brainly.com/question/11243732
#SPJ4
Answer:
(a): The car's relative position to the base of the cliff is x= 32.52m.
(b): The lenght of the car in the ir is tfall= 1.78 sec.
Explanation:
Vo= 0
V= ?
d= 50m
h= 30m
a= 4 m/s²
t= √(2*d/a)
t= 5 sec
V= a*t
V= 20 m/s
Vx= V * cos(24º)
Vx= 18.27 m/s
Vy= V* sin(24º)
Vy= 8.13 m/s
h= Vy*t + g*t²/2
clearing t:
tfall= 1.78 sec (b)
x= Vx * tfall
x= 32.52 m (a)
There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.
<u>Explanation:</u>
The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.
The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.