Answer:
The answer to your question is: a = 1.99 m/s²
Explanation:
Data
mass = 20 kg
angle = 56°
Force = 71 N
horizontal acceleration = ?
Process
Find the horizontal force
cos Ф = adjacent side / hypotenuse
adjacent side = hypotenuse x cosФ
adjacent side = 71 x cos 56
a.s. = 39.70 N
Newton's second law
F = ma
a = F/m
a = 39.7 / 20
a = 1.99 m/s²
Answer:
A helium filled balloon floats forwards in a accelerating car because of the pressure difference between the front and the back of the car. When the car is accelerating, the air moves relitive to the car and the consequence is that the pressure in the back is slightly higher than in the front; which results in net force in forward direction.
hit that heart please leave brainliest and let me know if want me to answer or explain it in a different way :)
Momentum = mass x velocity
= (1200)(25)
Momentum = 30,000 kg m/sec
hope this helps :)
Answer:
The total elongation for the tension member is of 0.25mm
Explanation:
Assuming that material is under a linear deformation then the relation between the stress and the specific elongation is given as:
(1)
Where E is the modulus of elasticity, σ the stress and ε the specific deformation. Also, the total longitudinal elongation can be expressed as:
(2)
Here L is the member extension and δL the change total longitudinal elongation.
Now if the stress is found then the deformation can be calculated by solving the stress-deformation equation (1). The stress applied sigama is computed dividing the axial load P by the cross-sectional area A:
Solving for epsilon and replacing the calculated value for the stress and the value for the modulus of elasticity:




Finally introducing the specific deformation and the longitudinal extension in the equation of total elongation (2):