1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Daniel [21]
3 years ago
6

How do speed and velocity differ

Physics
1 answer:
Elanso [62]3 years ago
4 0

Answer: Speed is a scalar

LVelocity is a vector quantity

Explanation: Scalar quantity such as speed only have magnitude in them. It only indicates the strength on how an object is moving. For velocity it is a vector quantity it both have magnitude and involves direction where the object is moving.

You might be interested in
A wave with a frequency of 14 Hz has a wavelength of 7m. At what speed will this wave travel?
frutty [35]

Answer: A wave with a frequency of 14 Hz has a wavelength of 3 meters. At what speed will this wave travel? 1. = 3m (4. = 42m. 2. ... 1,7m (46) = 7802 m. 4. A wave traveling at 230 m/sec has a wavelength of 2.1 meters. What is the frequency of.

Explanation: please give me brainlest

8 0
3 years ago
A rocket travels in the x-direction at speed 0.70c with respect to the earth. An experimenter on the rocket observes a collision
marishachu [46]

Answer:

A) The space time coordinate x of the collision in Earth's reference frame is

x \approx 103,46x10^{9}m.

B) The space time coordinate t of the collision in Earth's reference frame is

t=377,29s

Explanation:

We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).

An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.

<em>Lorentz transformation</em>

The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.

The Lorentz transformation is

                          x'=\frac{x-vt}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                                y'=y

                                z'=z

                          t'=\frac{t-\frac{v}{c^{2}}x}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations

                       x=\frac{x'+vt'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                           y=y'

                           z=z'

                        t=\frac{t'+\frac{v}{c^{2}}x'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

First we calculate the expression in the denominator

                            \frac{v^{2}}{c^{2}}=\frac{(0,70)^{2}c^{2}}{c^{2}} =(0,70)^{2}

                                \sqrt{1-\frac{v^{2}}{c^{2}}} =0,714

then we calculate t

                      t=\frac{t'+\frac{v}{c^{2}}x'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                      t=\frac{190s+\frac{0,70c}{c^{2}}.3,4x10^{10}m}{0,714}

                      t=\frac{190s+\frac{0,70c .3,4x10^{10}m}{299792458\frac{m}{s}}}{0,714}

                      t=\frac{190s+79,388s}{0,714}

finally we get that

                                     t=377,29s

then we calculate x

                         x=\frac{x'+vt'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                         x=\frac{3,4x10^{10}m+0,70c.190s}{0,714}}

                         x=\frac{3,4x10^{10}m+0,70.299792458\frac{m}{s}.190s}{0,714}}

                         x=\frac{3,4x10^{10}m+39872396914m}{0,714}}

                         x=\frac{73872396914m}{0,714}}

                         x=103462740775,91m

finally we get that

                                     x \approx 103,46x10^{9} m

5 0
3 years ago
How many times farther is Proxima Centauri from the sun than is earth from the sun
Aleks04 [339]

Answer:

Of the three stars in the system, the dimmest - called Proxima Centauri - is actually the nearest star to the Sun. The two bright stars, called Alpha Centauri A and B form a close binary system; they are separated by only 23 times the Earth - Sun distance.

5 0
2 years ago
Read 2 more answers
A carrot hangs from the ceiling by a rope,
valentina_108 [34]

Answer: Diagram B

Explanation:

A free body diagram shows the forces acting on an object in a certain scenario.

In this scenario there are two forces acting on the carrot: the Tension force (Ft) from the rope that the carrot is hanging from and Gravitational force(Fg) which is pulling the carrot to the Earth.

The diagram depicting this is diagram B.

7 0
2 years ago
Read 2 more answers
An aircraft is in level flight at 225 km/hr through air at standard conditions. The lift coefficient at this speed is 0.45 and t
mojhsa [17]

Answer:

- the effective lift area for the aircraft is 8.30 m²

- the required engine thrust is 1275 N

- required power is 79.7 kW

Explanation:

Given the data in the question;

Speed V = 225 km/hr = 62.5 m/s

The lift coefficient CL = 0.45

drag coefficient CD = 0.065

mass = 900 kg

g = 9.81 m/s²

a)  the effective lift area for the aircraft

we know that for a steady level flight, weight = lift and thrust = drag

Using the equation for the lift force

F_L = C_L\frac{1}{2}ρV²A = W

we substitute

0.45 × \frac{1}{2} × 1.21 × ( 62.5 )² × A = ( 900 × 9.81 )

1081.05 × A = 8829

A = 8829 / 1081.05

A = 8.30 m²

Therefore, the effective lift area for the aircraft is 8.30 m²

b) the required engine thrust and power to maintain level flight.

we use the expression for drag force

F_D = T = C_D\frac{1}{2}ρV²A

we substitute

= 0.065 × \frac{1}{2} × 1.21 × ( 62.5 )² × 8.30

T = 1275 N

Since drag and thrust force are the same,

Therefore, the required engine thrust is 1275 N

Power required;

P = TV

p = 1275 × 62.5

p = 79687.5 W

p = ( 79687.5 / 1000 )kW

p = 79.7 kW

Therefore, required power is 79.7 kW

8 0
3 years ago
Other questions:
  • Light travels approximately 982,080,000 ft/s, and one year has approximately 32,000,000 seconds. A light year is the distance li
    9·1 answer
  • A satellite originally moves in a circular orbit of radius R around the Earth. Suppose it is moved into a circular orbit of radi
    12·2 answers
  • A mass that weighs 10 lb stretches a spring 2.4 in. It rests in a liquid which imparts a dampening force of 4 pounds when the ve
    11·1 answer
  • A small barge is being used to transport trucks across a river. If the barge is 10.00 m long by 8.00 m wide and sinks an additio
    11·1 answer
  • Which point refers to the epicenter of an earthquake?
    8·2 answers
  • Which option below correctly compares the average annual dose of background radiation to the dose liked to an increased cancer r
    5·1 answer
  • If the wavelength of a beam of light is decreased what happens to the momentum of the photons
    12·1 answer
  • A toy of mass 0.155 kg is undergoing simple harmonic motion (SHM) on the end of a horizontal spring with force constant 305 N/m
    13·1 answer
  • Decay of ______ waste present in waste water leads to unpleasant smell
    7·1 answer
  • Convection is the transfer of energy by the motion of heated particles in a fluid. according to this information,which statement
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!