Answer:
ΔL = 0.66 m
Explanation:
The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:
ΔL = αLΔT
where,
ΔL = Change in Length of the bridge = ?
α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹
L = Original Length of the Bridge = 1000 m
ΔT = Change in Temperature = Final Temperature - Initial Temperature
ΔT = 40°C - (-20°C) = 60°C
Therefore,
ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)
<u>ΔL = 0.66 m</u>
Answer:
Wind the long piece of thin wire around the uniform glass rod multiple times, find the length of the total diameters using the metre ruler, and divide by the number of times you wound it around the rod.
Explanation:
Since the diameter of one long piece of thin wire is too thin to be measured by a metre ruler, you can wind it multiple times and push it side by side to get a length you can measure.
For example, if you wound it around 20 times and the total length of 20 diameters of the wire side-by-side is 2.0 cm, one winding, which is the diameter would be 2.0cm ÷ 20 = 0.10cm or 1mm.
Answer:
Explanation:
a)
Firstly to calculate the total mass of the can before the metal was lowered we need to add the mass of the eureka can and the mass of the water in the can. We don't know the mass of the water but we can easily find if we know the volume of the can. In order to calculate the volume we would have to multiply the area of the cross section by the height. So we do the following.
100
x 10cm = 1000
Now in order to find the mass that water has in this case we have to multiply the water's density by the volume, and so we get....
x 1000
= 1000g or 1kg
Knowing this, we now can calculate the total mass of the can before the metal was lowered, by adding the mass of the water to the mass of the can. So we get....
1000g + 100g = 1100g or 1.1kg
b)
The volume of the water that over flowed will be equal to the volume of the metal piece (since when we add the metal piece, the metal piece will force out the same volume of water as itself, to understand this more deeply you can read the about "Archimedes principle"). Knowing this we just have to calculate the volume of the metal piece an that will be the answer. So this time in order to find volume we will have to divide the total mass of the metal piece by its density. So we get....
20g ÷
= 2.5 
c)
Now to find out the total mass of the can after the metal piece was lowered we would have to add the mass of the can itself, mass of the water inside the can, and the mass of the metal piece. We know the mass of the can, and the metal piece but we don't know the mass of the water because when we lowered the metal piece some of the water overflowed, and as a result the mass of the water changed. So now we just have to find the mass of the water in the can keeping in mind the fact that 2.5
overflowed. So now we the same process as in number a) just with a few adjustments.
x (1000
- 2.5
) = 997.5g
So now that we know the mass of the water in the can after we added the metal piece we can add all the three masses together (the mass of the can. the mass of the water, and the mass of the metal piece) and get the answer.
100g + 997.5g + 20g = 1117.5g or 1.1175kg
Answer:
uujjjjjctc7tox7txr9ll8rz8lr5xl8r6l8dl85x8rl5x8rl5x8rl5xrx8l58rk5xr8l5xr6l8xr68lc