Answer: D(t) = 
Explanation: A harmonic motion of a spring can be modeled by a sinusoidal function, which, in general, is of the form:
y =
or y = 
where:
|a| is initil displacement
is period
For a Damped Harmonic Motion, i.e., when the spring doesn't bounce up and down forever, equations for displacement is:
or 
For this question in particular, initial displacement is maximum at 8cm, so it is used the cosine function:
period =
12 =
ω = 
Replacing values:

The equation of displacement, D(t), of a spring with damping factor is
.
Answer:
1375J
Explanation:
The gravitational potential/potential energy of the at the top of the tree which is the energy by virtue of its position.
P.E = mgh
mass = m
Acceleration due to gravity = g
height = h
At the top of the tree, the value of h (height) is high resulting in the gravitational potential. When the cat lands on the ground, the value of h is zero, the the gravitational potential would be zero and all the potential energy have been converted to other forms of energy.
Therefore, the total gravitational potential store is equal to the maximum amount of energy that can be transferred which is equal to 1375J.
Answer:
c. 337
Explanation:
can someone answer my question
Newton's Second Law would probably best describe this.
F = ma
Where F = force
m = mass
a = acceleration
The force required is dependant on the mass, and where the mass is greater, the force required will be greater.
The mass of the object is the answer of your question