The bearing could be the below:
oppositely charged, same initial direction
same charge, opposite initial direction
You can decide by utilizing your correct hand and put your fingers toward the attractive field (North to South). Thumb toward present or charged molecule. The course of your palm will demonstrate the heading of compelling set on a decidedly charged molecule and the bearing of the back of your hand will demonstrate the bearing of a contrarily charged molecule.
Answer:
270 m
Explanation:
Given:
v₀ = 63 m/s
a = 2.8 m/s²
t = 4.0 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (63 m/s) (4.0 s) + ½ (2.8 m/s²) (4.0 s)²
Δx = 274.4 m
Rounded to two significant figures, the displacement is 270 meters.
Before the engines fail
, the rocket's horizontal and vertical position in the air are


and its velocity vector has components


After
, its position is


and the rocket's velocity vector has horizontal and vertical components


After the engine failure
, the rocket is in freefall and its position is given by


and its velocity vector's components are


where we take
.
a. The maximum altitude occurs at the point during which
:

At this point, the rocket has an altitude of

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve
for
, then add 3 seconds to this time:

So the rocket stays in the air for a total of
.
c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute
for this time
:

Answer:
if you spoke this in english i can help you out
Explanation: