Sodium(Na) is the limiting reagent.
<h3>What is Limiting reagent?</h3>
The reactant that is totally consumed during a reaction, or the limiting reagent, decides when the process comes to an end. The precise quantity of reactant required to react with another element may be estimated from the reaction stoichiometry.
How do you identify a limiting reagent?
The limiting reactant is the one that is consumed first and sets a limit on the quantity of product(s) that can be produced. Calculate how many moles of each reactant are present and contrast this ratio with the mole ratio of the reactants in the balanced chemical equation to get the limiting reactant.
Start by writing the balanced chemical equation that describes this reaction

Notice that the reaction consumes 2 moles of sodium metal for every 1 mole of chlorine gas that takes part in the reaction and produces 2 moles of sodium chloride.
now we can see that we have 3 moles of sodium and 3 moles of chlorine, according to question. so, we can say that sodium is the limiting reagent in the given situation.
to learn more about Limiting Reagent go to - brainly.com/question/14222359
#SPJ4
Explanation:
Among the numerous types of organic compounds, four major categories are found in all living things carbohydrates, lipids, proteins and nucleic acids.
<u>Answer:</u> The concentration of radon after the given time is 
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:

We are given:

Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 3.00 days
= initial amount of the reactant = 
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![0.181days^{-1}=\frac{2.303}{3.00days}\log\frac{1.45\times 10^{-6}}{[A]}](https://tex.z-dn.net/?f=0.181days%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B3.00days%7D%5Clog%5Cfrac%7B1.45%5Ctimes%2010%5E%7B-6%7D%7D%7B%5BA%5D%7D)
![[A]=3.83\times 10^{-30}mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D3.83%5Ctimes%2010%5E%7B-30%7Dmol%2FL)
Hence, the concentration of radon after the given time is 
First we have to understand what a half life is. A half life is a measure of time when the amount of a certain object is 50% of the original amount. Hence the answer for this is letter A. The initial amount is 100. fifty percent of 100 is 50 and that happens after 15 hours. Hence, 15 hours is the half life period.