Answer:
a) Limiting: sulfur. Excess: aluminium.
b) 1.56g Al₂S₃.
c) 0.72g Al
Explanation:
Hello,
In this case, the initial mass of both aluminium and sulfur are missing, therefore, one could assume they are 1.00 g for each one. Thus, by considering the undergoing chemical reaction turns out:

a) Thus, considering the assumed mass (which could be changed based on the one you are given), the limiting reagent is identified as shown below:

Thereby, since there 1.00g of aluminium will consume 0.0554 mol of sulfur but there are just 0.0156 mol available, the limiting reagent is sulfur and the excess reagent is aluminium.
b) By stoichiometry, the produced grams of aluminium sulfide are:

c) The leftover is computed as follows:

NOTE: Remember I assumed the quantities, they could change based on those you are given, so the results might be different, but the procedure is quite the same.
Best regards.
When naming an ionic compound, write the name of the cation, which is the metal first. Then, write the name of the anion, which is the nonmetal. However, you remove the last 2-3 letters and replace suffixes.
1. RbF --> Rubidium Fluoride
Change fluorine to fluoride
2. CuO --> Copper (II) Oxide
Change oxygen to oxide. Oxide has a charge of -2. Since no subscripts are written, it means they have the same opposite charge. So, we use Copper (II).
<span>3. (NH</span>₄<span>)</span>₂<span>C</span>₂<span>O</span>₄ ---> Ammonium Oxalate
NH₄ is ammonia, but we change it to ammonium for polyatomic ions.
Answer:
Explanation:
The formula relating the mass m of a sample and the heat q to vaporize it is
q = mL, where L is the latent heat of vaporization.

Answer:
72 ml-50 ml =22 ml is the volume of the object
Explanation: