The answer: Solanum tuberosum
Answer:
The force of attraction between the molecules of the same substance
Explanation:
Yo sup??
since the collision is elastic therefore we can say that the two balls will then move in opposite direction.
If ball 1 was moving from east to west then after collision it will move from west to east
and if ball 2 was moving from west to east then it will start moving from east to west.
Hope this helps.
Answer:
hellooooo :) ur ans is 33.5 m/s
At time t, the displacement is h/2:
Δy = v₀ t + ½ at²
h/2 = 0 + ½ gt²
h = gt²
At time t+1, the displacement is h.
Δy = v₀ t + ½ at²
h = 0 + ½ g (t + 1)²
h = ½ g (t + 1)²
Set equal and solve for t:
gt² = ½ g (t + 1)²
2t² = (t + 1)²
2t² = t² + 2t + 1
t² − 2t = 1
t² − 2t + 1 = 2
(t − 1)² = 2
t − 1 = ±√2
t = 1 ± √2
Since t > 0, t = 1 + √2. So t+1 = 2 + √2.
At that time, the speed is:
v = at + v₀
v = g (2 + √2) + 0
v = g (2 + √2)
If g = 9.8 m/s², v = 33.5 m/s.
Explanation:
Assuming the wall is frictionless, there are four forces acting on the ladder.
Weight pulling down at the center of the ladder (mg).
Reaction force pushing to the left at the wall (Rw).
Reaction force pushing up at the foot of the ladder (Rf).
Friction force pushing to the right at the foot of the ladder (Ff).
(a) Calculate the reaction force at the wall.
Take the sum of the moments about the foot of the ladder.
∑τ = Iα
Rw (3.0 sin 60°) − mg (1.5 cos 60°) = 0
Rw (3.0 sin 60°) = mg (1.5 cos 60°)
Rw = mg / (2 tan 60°)
Rw = (10 kg) (9.8 m/s²) / (2√3)
Rw = 28 N
(b) State the friction at the foot of the ladder.
Take the sum of the forces in the x direction.
∑F = ma
Ff − Rw = 0
Ff = Rw
Ff = 28 N
(c) State the reaction at the foot of the ladder.
Take the sum of the forces in the y direction.
∑F = ma
Rf − mg = 0
Rf = mg
Rf = 98 N