Answer:
Trevor's taxi would cause higher levels of air pollution
Explanation:
Trevor's taxi use diesel oil.
Diesel is less cleaner than LPG.
Compared to automotive pollution from petrol and diesel, pollutants from LPG-driven cars include lower amounts of petroleum hydrocarbons, nitrogen oxides , sulphur oxides, ozone contamination and particulate matter.
The British physicist Joseph John (J. J.) Thomson (1856–1940) performed a series of experiments in 1897 designed to study the nature of electric discharge in a high-vacuum cathode-ray tube, an area being investigated by many scientists at the time. Thomson's model showed the atom as a positively charged ball of matter with negatively changed electrons floating freely around inside of it. This model showed the atom having no structure. There are also no protons and neutrons in this model. Thomson knew that the atom had positively and negatively charges particles in it he just didn't know how they were arranged. <span>Today's model gives us a much clearer picture of the atom. There is a positively charged center of the atom that is denser than the rest of it called the nucelus. This dense center is made up of positively charged protons and neutrally charged neutrons. Around the outside of the nucleus the electrons are organized on rings. These electrons are arranged in a certain pattern that is the same for all atoms.</span>
Answer:

Explanation:
We have to take into account the expression for the position of the fringes

where m is the number of the maximum, d is the separation of the slits, D is the distance to the screen.
(a) By replacing we obtain

(b) more information is required to solve this point. Please complete the information.
HOPE THIS HELPS!
Force = mass * acceleration
F = ma
We can start by substitution.
F = 2000 Newtons
Mass = 1000 kg
Divide to figure out the acceleration
2000/1000 = 2 m/s2
the answer would be that the acceleration measures 2 m/s2
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g