1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VMariaS [17]
3 years ago
6

What is the state of matter with definite volume?

Physics
2 answers:
GenaCL600 [577]3 years ago
6 0

Solid, and liquids gases do not have volume

Sedbober [7]3 years ago
4 0
Solids and liquids have definite volumes while gases do not
You might be interested in
You and a partner sit on the floor and stretch out a coiled spring to a length of 7.2 meters. You shake the coil so you
vekshin1

Answer:

Approximately 5.9\; {\rm m\cdot s^{-1}} (assuming that the partner is holding the other end of the coil stationary.)

Explanation:

In a standing wave, an antinode is a point that moves with maximal amplitude, while a node is a point that does not move at all. There is an antinode between every two adjacent nodes. Likewise, there is a node between every two adjacent antinodes.

The side of the spring that is being shaken moving with maximal amplitude. Hence, that point on this spring would also be an antinode. In contrast, the side of the spring that is held still (does not move at all) would be a node.

There would be a node between:

  • the antinode at the end of the spring that is being shaken, and
  • the antinode between the two ends of this spring.

Overall, the nodes and antinodes on this spring would be:

  • node at the end that is being held still,
  • antinode (as mentioned in the question),
  • node (inferred, not mentioned in the question), and
  • antinode at the end that is being shaken.

The distance between two adjacent nodes is equal to one-half (that is, (1/2)) the wavelength of the wave. The distance between a node and an adjacent antinode is one-quarter (that is, (1/4)) of the wavelength of the wave.

Thus, if the wavelength of the wave in this question is \lambda, the length of this spring would be:

\displaystyle \frac{1}{2}\, \lambda + \frac{1}{4}\, \lambda = \frac{3}{4}\, \lambda.

The question states that the length of this coiled spring is 7.2\; {\rm m}. In other words, (3/4) \, \lambda = 7.2\; {\rm m}. The wavelength of this wave would be (7.2\; {\rm m}) / (3/4) = 9.6\; {\rm m}.

The frequency f of this wave is the number of cycles in unit time:

\begin{aligned} f &= \frac{10}{16.3\; {\rm s}} \approx 0.613\; {\rm s^{-1}}\end{aligned}.

Hence, the speed v of this wave would be:

\begin{aligned} v &= \lambda\, f \\ &=9.6\; {\rm m} \times 0.613\; {\rm s^{-1}} \\ &\approx 5.9\; {\rm m \cdot s^{-1}}\end{aligned}.

3 0
2 years ago
Two ropes are attached to either side of a 100.0 kg wagon as shown below. The rope on the right is pulled at an angle 40.0° rela
NikAS [45]

The acceleration of the wagon is found by applying Newton's Second Law of motion.

1. The responses for question 1 are;

  • x-component of the tension in the rope on the right is approximately <u>91.93 N</u>
  • y-component of the tension in the rope on the right is approximately <u>71.135 N</u>
  • x-component of the tension in the rope on the left is -80.0 N
  • y-component of the tension in the rope on the left is 0

2. The net force in the x-direction is approximately <u>11.93 N</u>

3. The net acceleration of the wagon in the horizontal direction is approximately <u>0.1193 m/s²</u>.

Reasons:

The given parameters are;

Mass of the wagon, m = 100.0 kg

Angle of inclination to the horizontal of the rope to the right, θ = 40.0°

Tension in the rope on the right = 120.0 N

Direction in which the rope on the left is pulled = To the west

Tension in the rope on the left = 80.0 N

1. The <em>x</em> and <em>y</em> component of the tension in the rope on the right are;

x-component = 120.0 N × cos(40.0°) ≈ <u>91.93 N</u>

y-component = 120.0 N × sin(40.0°) ≈ <u>77.135 N</u>

The <em>x</em> and <em>y</em> component of the tension in the rope on the left are;

x-component = 80.0 N × cos(180°) = <u>-80.0 N</u>

y-component = 80.0 N × sin(180°) = <u>0.0 N</u>

2. The net force in the horizontal direction, Fₓ, is found as follows;

Fₓ = The x-component of the rope on the left + The x-component of the rope on the right

Which gives;

Fₓ = 91.93 N - 80.0 N = <u>11.93 N</u>

3. The net acceleration of the block is given as follows;

According to Newton's Second Law of motion, we have;

Force in the horizontal direction, Fₓ = Mass of wagon, m × Acceleration of the wagon in the horizontal direction, aₓ

Fₓ = m × aₓ

Therefore;

\displaystyle a_x = \frac{F_x}{m}  \approx \frac{11.93 \, N}{100.0 \, kg} = \mathbf{0.1193 \ m/s^2}

  • The acceleration of the wagon in the horizontal direction, aₓ ≈ <u>0.1193 m/s²</u>.

Learn more here:

brainly.com/question/20357188

8 0
2 years ago
Given the function f(x) = 8x3 − 3x2 − 5x 8, what part of the function indicates that the left and right ends point in opposite d
ale4655 [162]

Answer: The degree of the first term.

Explanation:

The function:

f(x) = 8x^3-3x^2-5x^8

The left and right ends would be indicated when x is changed to -x. When this is substituted, the change is indicated by the first term because only the degree of first term is odd.

Let the left hand side be donated by -x.

Then,

f(-x) =8(-x)^3-3(-x)^2-5(-x)^8\\ \Rightarrow f(-x)=-8x^3-3x^2-5x^8

Hence, the correct option is the degree of the first term indicates the left and right end points of the function.

8 0
3 years ago
Read 2 more answers
A spacecraft of mass 1500 kg orbits the earth at an altitude of approximately 450 km above the surface of the earth. Assuming a
PSYCHO15rus [73]

Answer:

1.28 x 10^4 N

Explanation:

m = 1500 kg, h = 450 km, radius of earth, R = 6400 km

Let the acceleration due to gravity at this height is g'

g' / g = {R / (R + h)}^2

g' / g = {6400 /  (6850)}^2

g' = 8.55 m/s^2

The force between the spacecraft and teh earth is teh weight of teh spacecraft

W = m x g' = 1500 x 8.55 = 1.28 x 10^4 N

8 0
3 years ago
How is the scientific use of the term digital different from the common use
Bess [88]
We commonly know refer to something 'digital' has to something electronic that can be visibly seen such as a watch, clock, camera, screen, etc.  It really refers to stored energy or electricity that's not natural.  But the word 'digital' in science refers to the depiction of data<span> or </span>information<span> in </span>figures<span> (such as in a </span>table<span>) in contrast to as a </span>chart<span>, </span>graph<span>, </span>drawing<span>, or other pictorial </span>form.<span>

</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • A person stands 6.00 m from a speaker and 8.00 m from an identical speaker. What is the frequency of the second (n=2) interferen
    10·1 answer
  • Which of the following items can enter and exit an isolated system?
    14·1 answer
  • To make yourself some coffee, you put one cup of water (246 gg ) in a small pot on the stove. Part A What quantity of energy mus
    11·1 answer
  • What are simple machines please?
    13·2 answers
  • A physics student shoves a 0.50-kg block from the bottom of a frictionless 30.0° inclined plane. The student performs 4.0 j of w
    8·1 answer
  • You send a traveling wave along a particular string by oscillating one end. If you increase the frequency of oscillations, does
    12·1 answer
  • If two connected points objects pass through the same set of three points, the shapes created by each will be identical, regardl
    11·1 answer
  • A bag contains lenses with focal lengths 10 cm, 20 cm and 25 cm which are not marked with their focal length. Describe a simple
    10·1 answer
  • What happens to most of the light waves that strike a clear pane of glass
    9·2 answers
  • A young man heaves a 6.5 kg rock at a velocity of 6.9 m/s. What is the kinetic energy of the rock?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!