Answer:
74,67 gr/mol
Explanation:
At STP 1 mole of an ideal gas has volume of 22,4 L. Since we know the volume of the gas we can find the number of moles of the gas. (300 mL=0,3 L)
n=0,3L/22,4 L=0,01339 mol
Since we know weight of the gas as 1 g, we can find the molecular weight as;
MW=1 g/0,01339 mol =74,67 gr/mol
Balanced equation:
Mg + 2 HNO3 —> Mg(NO3)2 + H2
This is a metal + acid reaction giving salt and hydrogen (not water).
The correct answer here is C. Dew forms on the grass.
Water is a polar substance, which means it has many unique properties. One of which, is its ability to adhere and cohere to surfaces and substances. This particular question is asking about the cohesive properties of water, meaning it’s ability to stick to itself (through bonding.) The only answer choice that represents a situation where water is linking up with other molecules of water are dew drops. The water comes together using cohesion to form the drop and hen the water’s high surface tension properties meet the dew drop’s shape. The other answer choices describe alternate processes like: freezing, melting, and evaporation, respectively.
I hope this helps! :)
1 --> Jaws
2 --> Four limbs
4 --> Mammary & fur
5 --> Walking on two legs
Answer:
-88.66 kJ/mol
Explanation:
The expressions of heat capacity (Cp,m) for C(s) and for H₂(g) are:
C(s): Cp,m/(J K-1 mol-1) = 16.86 + (4.77T/10³) - (8.54x10⁵/T²)
H₂(g): Cp,m/(J K-1 mol-1) = 27.28 + (3.26T/10³) + (0.50x10⁵/T²)
Cp = A + BT + CT⁻²
For the Kirchoff's Law:
ΔHf = ΔH°f + 
Where ΔH°f is the enthalpy at 298 K, T1 is 298 K, T2 is the temperature given (373 K), and DCp is the variation of Cp (products less reactants). ΔH°f for ethene is -84.68 kJ/mol and the reaction is:
2C(s) + 3H₂(g) → C₂H₆
So, DCp:
dA = A(C₂H₆) - [2xA(C) + 3xA(H₂)] = 14.73 - [2x16.86 + 3x27.28] = -100.83
dB = B(C₂H₆) - [2xB(C) + 3xB(H₂)] = 0.1272 - [2x4.77x10⁻³ + 3x3.26x10⁻³] = 0.10788
dC = C(C₂H₆) - [2xC(C) + 3xC(H₂)] = 0 - (2x(-8.54x10⁵) + 3x0.50x10⁵) = 15.58x10⁵
dCp = -100.83 + 0.10788T + 15.58x10⁵T⁻²
= -3796.48 J/mol = -3.80 kJ/mol (solved by a graphic calculator)
ΔHf = -84.68 - 3.80
ΔHf = -88.66 kJ/mol