The specific heat capacity the substance is calculated using the below formula
Q(heat) = Mc delta T
Q =1560 cal
m(mass) 312 g
delta T (change in temperature ) = 15 c
C= specific heat capacity=?
by making c the subject of the formula
c=Q/m delta T
= 1560 cal/ 312g x 15 c = 0.33 cal/g/c (answer B)
This is given by Avogagro number: 1 mol = 6.02*10^23 particles
Then you can do whichever to these two relations, because they are equivalent:
- 1mol / 6.02*10^23 representative particles, and
- 6.02*10^23 representative particle /1 mol
Only the second option of the question includes one of the valid conversion factors. Then, the conversion factor of the second option is the right answer
Given:
A compound with:
Number of carbon atoms = 9
Number of double bonds = 1
A double bond between 5th and 6th carbon
A propyl group (CH2CH2CH3) branching off the 3rd carbon from the left
Try to illustrate the given and observe the formation of the atoms. Now, follow the correct IUPAC naming system. The name of the compound is
4-propyl-1-hexene
Count from the right to the left, the double bond is between the 1st and 2nd carbon, thus, 1-hexene. The propyl branches out the 4th carbon from the right, thus 4-propyl.
Answer: it would be 0.026 moles
Explanation: PV=nRT, P is the pressure of gas, V is the volume it occupies n is the number of moles of gas present in the sample, R is the universal gas constant which is equal to 0.0821 atm L/mol K and T is the absolute temperature of the gas
Answer:
The average kinetic energy drastically increases.
Explanation:
The average kinetic energy drastically increases when the gas particles collide against each other at a constant temperature and volume because the collision will increase the heat content of gas at a particular temperature and gas particles begin to move faster as gain more kinetic energy.
Hence, the correct answer is "B".