Answer:
7mL of sterile water is the initial amount of the concentrated solution is 3mL
Explanation:
In this problem, the vial must be <em>diluted </em>from 5mg/mL to 1.5mg/mL, that means the solution must be diluted:
5mg/mL / 1.5mg/mL = 3.33 times
If the initial amount of the drug in the vial is 3mL, the final volume must be:
10mL
That means the volume of water that should be added is:
10mL - 3mL:
<h3>7mL of sterile water is the initial amount of the concentrated solution is 3mL</h3>
The concentration of the hydroxide ions after 50 ml of 0.250M NaOH is added to 120ml of 0.200M Na2SO4 is 7.35 x 10^-2 M.
What is meant by concentration?
Concentration is the total amount of solute present in the given volume of solution. this is expressed in terms of molarity, molality, mole fraction, normality etc. The term concentration mostly refers to the solvents and solutes present in the solution.
Concentration of hydroxide ions can be calculated by,
M (OH^-) = V (NaOH) x M (NaOH) / V (total) = 50ml x 0.250M / 50ml + 120ml = 0.0735M = 7.35 x 10^-2 M.
where M (OH^-) = concentration of hydroxide ions, V(NaOH) = volume of NaOH, M(NaOH) = concentration of NaOH.
Therefore, the concentration of the hydroxide ions after 50 ml of 0.250M NaOH is added to 120ml of 0.200M Na2SO4 is 7.35 x 10^-2 M.
To learn more about concentration click on the given link brainly.com/question/17206790
#SPJ4
Answer:
This is true. A hot glass does look the same as a cold glass. Glass won't change its look if it's below 648 degrees Celsius.
Gamma rays
Explanation:
Gamma rays is a form of electromagnetic radiation. It has zero mass and no charge.
Most radiations are particles but gamma rays are not particles they are mere rays.
- They have an energy range between 10KeV and 3Mev
- The range of gamma rays is not definite but it is very long.
- The intensity of gamma rays for any medium decreases exponentially from the source.
- Gamma rays are ionizing radiations
learn more:
Irradiation brainly.com/question/10726711
#learnwithBrainly
Answer:
Mass of NaBr produced = 23.67 g
Explanation:
Given data:
Mass of AgBr = 42.7 g
Mass of NaBr produced = ?
Solution:
Chemical equation:
2Na₂S₂O₃ + AgBr → NaBr + Na₃(Ag(S₂O₃)₂
Number of moles of AgBr:
Number of moles = mass/molar mass
Number of moles = 42.7 g/ 187.7 g/mol
Number of moles = 0.23 mol
now we will compare the moles of AgBr with NaBr.
AgBr : NaBr
1 : 1
0.23 : 0.23
Mass of NaBr:
Mass = number of moles × molar mass
Mass = 0.23 mol × 102.89 g/mol
Mass = 23.67 g