When the product formation is decreased if a substance B is added to an enzyme reaction and more substrate being added would not increase the amount of produce formed, then we assume that substance b could be a noncompetitive inhibitor. This type of inhibitor would be one that would bind to the enzyme with or without the presence of a substrate in different sites at the same time. It would change the conformation of the enzyme and also the active sites. As a result, the substrate would not be able to bind to the enzyme more effectively than the usual. The overall efficiency would decrease.
An element or compound which occurs naturally in the earth is a mineral
Answer:
Polyhydroxyl alcohols
Explanation:
Whenever we have several C-OH bonds, we have a polyhydroxyl alcohol. For example, if we have just one alcohol group, that is, an R-OH group, then the naming is simple, say, we have EtOH, it's ethanol.
The problem becomes more complicated when we have several hydroxyl groups present in the alcohol. Let's say we have an ethane molecule and we replace the hydrogen atoms of carbon 1 and 2 with hydroxyl groups. In that case, we have 1,2-ethanediol. Similarly, we can have triols etc.
That said, we have poly (several) hydroxyl groups and we can generalize this to having polyhydroxyl alcohols.
A green rat snake that lives in the grass and a brown rat snake that lives in the desert is a form of geographically separated species.
Explanation:
The habitats of the green rat snake and brown rat snake shows that they are geographically separated species.
The two rat snakes are different species because of their distinct habitat and morphology.
When two species get separated by habitat their breeding method changes either by morphology or breeding pattern.
Such species do not produce viable offspring.
Thus a green rat snake and a brown rat snake have very different habitats they are now two different species.
Such species are said to be reproductively isolated species. Two species having genetic divergence undergo natural selection to adapt to the environment.