Answer:
<em>faster and at a higher luminosity and temperature.</em>
Explanation:
A protostar looks like a star but its core is not yet hot enough for fusion to take place. The luminosity comes exclusively from the heating of the protostar as it contracts. Protostars are usually surrounded by dust, which blocks the light that they emit, so they are difficult to observe in the visible spectrum.
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
Stars above about 200 solar masses (Higher mass) generate power so furiously that gravity cannot contain their internal pressure. These stars blow themselves apart and do not exist for long if at all. A protostar with less than 0.08 solar masses never reaches the 10 million K temperature needed for efficient hydrogen fusion. These result in “failed stars” called brown dwarfs which radiate mainly in the infrared and look deep red in color. They are very dim and difficult to detect, but there might be many of them, and in fact they might outnumber other stars in the universe.
That is why higher mass protostars enter the main sequence at a <em>faster and at a higher luminosity and temperature.</em>
The entire park area is considered to be a semi-arid desert, but distinct habitats are located at different elevations along the 8,000-foot elevation gradient. Near the Colorado River, riparian vegetation and sandy beaches prevail.
The answer is : Low frequency sounds
place theory is a theory of hearing which states that our perception of sound depends on where each component frequency produces vibrations along basilar membrane, which is very sensitive to low frequency sound
Answer:
The final temperature of the two objects is the same.
Explanation:
The expression for the heat energy in terms of mass, specific heat and the change in the temperature is as follows:

Here, Q is the heat energy, m is the mass of the object, c is the specific heat and
are the final temperature and initial temperature.
According to the given question, Two objects of the same mass, but made of different materials, are initially at the same temperature. Equal amounts of heat are added to each object.
............(1)
.............(2)
From (1) and (2),



Therefore, the final temperature of the two objects is the same.