Therefore the world's record high temperature of 134.0°F (56.7°C) is held by Furnace Creek Ranch in Death Valley, California. That global high temperature was attained on July 10, 1913.
Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
Answer:
change in mass = 2.41*10^{8}kg
Explanation:
The change in the mass can be computed by using the relation
(1)
That is, the energy liberated comes from the mass of the nuclear fuel. The energy generated in one year is

Hence, by replacing in the equation (1) you have (c=3*10^{8}m/s)

HOPE THIS HELPS!!
Answer:
Explanation:
separation between two gaps, d = 5 cm
angle between central and second order maxima, θ = 0.52°
use
d Sinθ = n λ
n = 2
0.05 x Sin 0.52° = 2 x λ
λ = 2.27 x 10^-4 m
λ = 226.9 micro metre
Answer:
α= 1.3 10-5 ºC⁻¹
Explanation:
La dilatación termica de los cuerpos esta dada por la relación
ΔL = L₀ α ( T -T₀)
en este caso nos piden el coeficiente de dilatación térmica
α =DL/L₀ DT
calculemos
α = ( 100,13 -100)/[100 (100 – 0)]
α = 1,3 10-5 ºC⁻¹
Traduction
The thermal expansion of bodies is given by the relationship
ΔL = L₀ α (T -T₀)
in this case they ask us for the coefficient of thermal expansion
α = ΔL / L₀ ΔT
let's calculate
α = (100,13 -100) / [100 (100 - 0)]
α= 1.3 10-5 ºC⁻¹