Answer:
a. 7.62cm
b. Real and inverted
c. 2.76 cm
d. 3450
Explanation:
We proceed as follows;
a. the lens equation that relates the object distance to the image distance with the focal length is given as follows;
1/f = 1/p + 1/q
making q the subject of the formula;
q = pf/p-f
From the question;
p = 4.70m
f = 7.5cm = 0.075m
Substituting these, we have ;
q = (4.7)(0.075)/(4.7-0.075) = 0.3525/4.625 = 0.0762 = 7.62 cm
b. The image is real and inverted since the image distance is positive
c. We want to calculate how tall the image is
Mathematically;
h1 = (q/p)h0
h1 = (7.62/4.70)* 1.7
h1 = 2.76 cm
d. We want to calculate the number of pixels that fit into this image
Mathematically:
n = h1/8 micro meter
n = 2.76cm/8 micro meter = 2.76 * 10^-2/8 * 10^-6 = 3450
Rutherford's model of the atom (ESAAQ) Rutherford carried out some experiments which led to a change in ideas around the atom. His new model described the atom as a tiny, dense, positively charged core called a nucleus surrounded by lighter, negatively charged electrons.
You know that when the displacement is equal to the amplitude (A), the velocity is zero, which implies that the kinetic energy (KE) is zeero, so the total mechanical energy (ME) is the potential energy (PE).
And you know that the potential energy, PE, is [ 1/2 ] k (x^2)
Then, use x = A, to calculate the PE in the point where ME = PE.
ME = PE = [1/2] k (A)^2.
At half of the amplitude, x = A/2 => PE = [ 1/2] k (A/2)^2
=> PE = [1/4] { [1/2]k(A)^2 } = .[1/4] ME
So, if PE is 1/4 of ME, KE is 3/4 of ME.
And the answer is 3/4
Answer:
D. Uranium
Explanation:
I just got the answer right on my quiz.