Answer:

Explanation:
Consider two particles are initially at rest.
Therefore,
the kinetic energy of the particles is zero.
That initial K.E. = 0
The relative velocity with which both the particles are approaching each other is Δv and their reduced masses are

now, since both the masses have mass m
therefore,

= m/2
The final K.E. of the particles is

Distance between two particles is d and the gravitational potential energy between them is given by

By law of conservation of energy we have

Now plugging the values we get



This the required relation between G,m and d
Answer: Use this F=Ma.
Explanation: So your answer will be
F=1 Kg+9.8 ms-2
So the answer will be
F=9.8N
How'd I do this?
I just used Newton's second law of motion.
I'll also put the derivation just in case.
Applied force α (Not its alpha, proportionality symbol) change in momentum
Δp α p final- p initial
Δp α mv-mu (v=final velocity, u=initial velocity and p=v*m)
or then
F α m(v-u)/t
So, as we know v=final velocity & u= initial velocity and v-u/t =a.
So F α ma, we now remove the proportionality symbol so we'll add a proportionality constant to make the RHS & LHS equal.
So, F=<em>k</em>ma (where k is the proportionality constant)
<em>k</em> is 1 so you can ignore it.
So, our equation becomes F=ma
Answer:
Soap breaks up the oil into smaller drops, which can mix with the water. It works because soap is made up of molecules with two very different ends (one end of molecules are hydrophilic, so they love water; the other end of molecules is hydrophobic, so they hate water).