Answer:
option B
Explanation:
given,
diameter of the rotating space = 2 Km
Force exerted at the edge of the space = 1 g
force experienced at the half way = ?
As the object is rotating in the circular part
Force is equal to centripetal acceleration.
at the edge
g = ω² r
ω is the angular velocity of the particle
r is the radius.
now, acceleration at the half way
g' = ω² r'



People at the halfway experience g/2
hence, the correct answer is option B
Answer:
the order of importance must be b e a f c
Explanation:
Modern theories indicate that the moon was formed by the collision of a bad plant with the Earth during its initial cooling period, due to which part of the earth's material was volatilized and as a ring of remains that eventually consolidated in Moon.
Based on the aforementioned, let's analyze the statements in order of importance
b) True. Since the moon is material evaporated from Earth, its compassion is similar
e) True. If the moon is material volatilized from the earth it must train a finite receding speed
a) True. The solar system was full of small bodies in erratic orbits that wander between and with larger bodies
f) False. The moon's rotation and translation are equal has no relation to its formation phase
c) false. The amount of vaporized material on the moon is large
Therefore, the order of importance must be
b e a f c
Answer:
m³/(kg⋅s²)
Explanation:
Hello.
In this case, since the involved formula is:

By writing a dimensional analysis with the proper algebra handling, we obtain:
![N[=]G*\frac{kg*kg}{m^2}\\ \\kg*\frac{m}{s^2}[=]G *\frac{kg*kg}{m^2}\\\\G[=]\frac{kg*m*m^2}{kg^2*s^2}\\ \\G[=]\frac{m^3}{kg*s^2}](https://tex.z-dn.net/?f=N%5B%3D%5DG%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%20%5C%5Ckg%2A%5Cfrac%7Bm%7D%7Bs%5E2%7D%5B%3D%5DG%20%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%5C%5CG%5B%3D%5D%5Cfrac%7Bkg%2Am%2Am%5E2%7D%7Bkg%5E2%2As%5E2%7D%5C%5C%20%5C%5CG%5B%3D%5D%5Cfrac%7Bm%5E3%7D%7Bkg%2As%5E2%7D)
Thus, answer is:
m³/(kg⋅s²)
Note that the [=] is used to indicate the units of G.
Best regards
Answer:
Part(a): The frequency is
.
Part(b): The speed of the wave is
.
Explanation:
Given:
The distance between the crests of the wave,
.
The time required for the wave to laps against the pier, 
The distance between any two crests of a wave is known as the wavelength of the wave. So the wavelength of the wave is
.
Also, the time required for the wave for each laps is the time period of oscillation and it is given by
.
Part(a):
The relation between the frequency and time period is given by

Substituting the value of
in equation (1), we have

Part(b):
The relation between the velocity of a wave to its frequency is given by

Substituting the value of
and
in equation (2), we have

Answer:
Archimedes' principle states that, when a body is partially or completely immersed in a fluid, it experiences an apparent loss in weight that is equal to the weight of the fluid displaced by the immersed part of the body.
Explanation:
Archimedes' principle allows the buoyancy of an object partially or fully immersed in a fluid to be calculated. The downward force on the object is simply its weight. Thus, the net force on the object is the difference between the magnitudes
of the buoyant force and its weight. If this net force is positive, the object rises; if negative, the object sinks; and if zero, the object is neutrally buoyant - that is, it remains in place without either rising or sinking. In simple words,