1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
3 years ago
5

An aluminum bar 600mm long, with diameter 40mm long has a hole drilled in the center of the bar.The hole is 30mm in diameter and

is 100mm long. If modulus of elasticity for the aluminum is 85GN/m2.Calculate the total contraction on the bar due to a compressive load in 180KN
Physics
1 answer:
Svetradugi [14.3K]3 years ago
5 0

Answer:

Total contraction on the Bar  = 1.22786 mm

Explanation:

Given that:

Total Length for aluminum bar = 600 mm  

Diameter for aluminum bar  = 40 mm

Hole diameter  = 30 mm

Hole length = 100 mm

elasticity for the aluminum is 85GN/m² = 85 × 10³ N/mm²

compressive load P = 180 KN = 180  × 10³ N

Calculate the total contraction on the bar = ???

The relation used in  calculating the contraction on the bar is:

\delta L = \dfrac{P *L }{A*E}

The relation used in  calculating the total contraction on the bar can be expressed as :

Total contraction in the Bar = (contraction in part of bar without hole + contraction in part of bar with hole)

i.e

Total contraction on the Bar = \dfrac{P *L_1 }{A_1*E} +  \dfrac{P *L_2 }{A_2 *E}

Let's find the area of cross section without the hole and with the hole

Area of cross section without the hole is :

Using A = πd²/4

A = π (40)²/4

A = 1256.64 mm²

Area of cross section with the hole is :

A = π (40²-30²)/4

A = 549.78 mm²

Total contraction on the Bar = \dfrac{P *L_1 }{A_1*E} +  \dfrac{P *L_2 }{A_2 *E}

Total contraction on the Bar  = \dfrac{180 *10^3 \N  }{85*10^3 \ N/mm^2} [\dfrac{500}{1256.64}+ \dfrac{100}{549.78}]

Total contraction on the Bar  = 2.117( 0.398 + 0.182)

Total contraction on the Bar  = 2.117*(0.58)

Total contraction on the Bar  = 1.22786 mm

You might be interested in
What are some advantages of using the graphical method of vector resolution?
valina [46]
<span>It's more accurate than scale diagrams. 
You don't need tools (graph paper, protractor etc) 
Also, if you are using computers, it easy to programmme.</span><span>
</span>
6 0
3 years ago
Which of the following is least likely to result from seafloor spreading​
Assoli18 [71]

Answer:

An reversal in the magnetic fields of the north and south pole. This would be the most logical option for me...correct me if I'm wrong.

Explanation:

New seafloor is formed when magma is forced upward toward the surface at a mid-ocean.

7 0
3 years ago
Consider a semi-infinite (hollow) cylinder of radius R with uniform surface charge density. Find the electric field at a point o
VikaD [51]

Answer:

For the point inside the cylinder: E = \frac{\sigma R}{2\epsilon_0}\frac{1}{\sqrt{R^2 + 4x_0^2}}

For the point outside the cylinder: E = \frac{\sigma R}{2\epsilon_0}\frac{1}{\sqrt{R^2 + x_0^2}}

where x0 is the position of the point on the x-axis and σ is the surface charge density.

Explanation:

Let us assume that the finite end of the cylinder is positioned at the origin. And the rest of the cylinder lies on the (-x) axis, which is the vertical axis in this question. In the first case (inside the cylinder) we will calculate the electric field at an arbitrary point -x0. In the second case (outside), the point will be +x0.

<u>x = -x0:</u>

The cylinder is consist of the sum of the rings with the same radius.

First we will calculate the electric field at point -x0 created by the ring at an arbitrary point x.

We will also separate the ring into infinitesimal portions of length 'ds' where ds = Rdθ.

The charge of the portion 'ds' is 'dq' where dq = σds = σRdθ. σ is the surface charge density.

Now, the electric field created by the small portion is 'dE'.

dE = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rd\theta}{R^2+x^2}

The electric field is a vector, and it needs to be separated into its components in order us to integrate it. But, the sum of horizontal components is zero due to symmetry. Every dE has an equal but opposite counterpart which cancels it out. So, we only need to take the component with the sine term.

dE = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rd\theta}{R^2+x^2} \frac{x}{\sqrt{x^2+R^2}} = dE = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rxd\theta}{(R^2+x^2)^{3/2}}

We have to integrate it over the ring, which is an angular integration.

E_{ring} = \int{dE} = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rx}{(R^2+x^2)^{3/2}}\int\limits^{2\pi}_0 {} \, d\theta  = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rx}{(R^2+x^2)^{3/2}}2\pi = \frac{1}{2\epsilon_0}\frac{\sigma Rx}{(R^2+x^2)^{3/2}}

This is the electric field created by a ring a distance x away from the point -x0. Now we can integrate this electric field over the semi-infinite cylinder to find the total E-field:

E_{cylinder} = \int{E_{ring}} = \frac{\sigma R}{2\epsilon_0}\int\limits^{-\inf}_{-2x_0} \frac{x}{(R^2+x^2)^{3/2}}dx = \frac{\sigma R}{2\epsilon_0}\frac{1}{\sqrt{R^2 + 4x_0^2}}

The reason we integrate over -2x0 to -inf is that the rings above -x0 and below to-2x0 cancel out each other. Electric field is created by the rings below -2x0 to -inf.

<u>x = +x0: </u>

We will only change the boundaries of the last integration.

E_{cylinder} = \int{E_{ring}} = \frac{\sigma R}{2\epsilon_0}\int\limits^{-\inf}_{x_0} \frac{x}{(R^2+x^2)^{3/2}}dx = \frac{\sigma R}{2\epsilon_0}\frac{1}{\sqrt{R^2 + x_0^2}}

6 0
3 years ago
How is a vector represented in symbol form?
VikaD [51]
I believe it’s just a “v” with an arrow above it.
6 0
3 years ago
How is newtons third law of motion demonstrated on a roller coaster?
butalik [34]
<span>Newton's Third Law of Action-Reaction is that for each and every action that happens, there is an equal and opposite reaction to it. In the scenario of a roller coaster, this is when you push down on the seat of the roller coaster as it flies along and the seat pushes back against you.</span>
8 0
3 years ago
Other questions:
  • Producing a current by moving a wire through a magnetic field is called “BLANK” induction
    12·2 answers
  • A shuttle changed velocity from 5.0 km/s to 11.9 km/s in 0.5 seconds. What is the acceleration of
    12·1 answer
  • A charge of 70 A ·h (ampere-hours) moves through a poten- difference of 25 V. What are (a) the charge in coulombs and(b) the mag
    14·1 answer
  • During a race the dirt bike was observed to leap up off the small hill at A at an angle of 60^o with the horizontal. If the poin
    8·1 answer
  • Pilots of high-performance fighter planes can be subjected to large centripetal accelerations during high-speed turns. Because o
    15·1 answer
  • A boy is exerting a force of 70 N at a 50-degree angle on a lawnmower. He is accelerating at 1.8 m/s2. Round the answers to the
    15·1 answer
  • The Milky Way is our home galaxy. Which of the following are the main components of a galaxy?
    9·1 answer
  • What is the best description of the destructive interference of light?
    5·1 answer
  • There is a constriction in a clinical thermometer give reasons​
    10·1 answer
  • What are sugar and water in a homogenous mixture of sugar and water?.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!