Frictional force and Applied force has same “magnitude” and “opposite” direction.
Option: B
<u>Explanation</u>:
When a book is moved horizontally by applying “force” on the book, the frictional force is opposed to the book by the table. Here, this “frictional force” is opposing the book has the same force what we applied on the book but this frictional force and the applied force are opposite in direction. Always the “frictional force” is opposite to the “applied force” which stops the object to move. For example, if a force applied leftward to the object the frictional force is acted on the right side of the object.
When two objects are in contact they experience a "frictional force". This "frictional force" acts opposite to the force applied on to move the object.
Formula for "frictional force" is 
Where,
is coefficient of friction and N is normal force.
Answer:
8.3m/s
Explanation:
Given parameters:
mass of clay ball = 5kg
Speed of clay ball = 25m/s
mass of clay ball at rest = 10kg
speed of clay ball at rest = 0m/s
Unknown:
Velocity after collision = ?
Solution:
Since the balls stick together, this is an inelastic collision:
m1v1 + m2v2 = v(m1 + m2)
5(25) + 10(0) = v (5 + 10)
125 = 15v
v = 8.3m/s
The acceleration of the car,

Here, v is final velocity, u is initial velocity and t is time taken by the car.
Given
,
and 
Therefore, from above equation
.
Here, negative sign shows deceleration of a car.
Thus the the magnitude of car acceleration is
.
Answer:
In its most general sense, a <u>picture</u> is a visual representation of something, especially in the form of a painting, drawing, photograph, or the like. A picture can also refer to a mental image, among other senses.