Answer:

Explanation:
From the question we are told that:
Height
Length
Mass 
Final speed
Generally the equation for Potential Energy P.E is mathematically given by

Therefore
Initial potential energy

Generally the equation for Kinetic Energy K.E is mathematically given by

Therefore
Final kinetic energy

Generally the equation for Work_done is mathematically given by

Therefore


Answer:
B is the answers for the question
Answer: go0gle will know the answer
Explanation: hey I’m not giving fault answers so yea
The electric potential at the origin of the xy coordinate system is negative infinity
<h3>What is the electric field due to the 4.0 μC charge?</h3>
The electric field due to the 4.0 μC charge is E = kq/r² where
- k = electric constant = 9.0 × 10 Nm²/C²,
- q = 4.0 μC = 4.0 × 10 C and
- r = distance of charge from origin = x₁ - 0 = 2.0 m - 0 m = 2.0 m
<h3>What is the electric field due to the -4.0 μC charge?</h3>
The electric field due to the -4.0 μC charge is E = kq'/r² where
- k = electric constant = 9.0 × 10 Nm²/C²,
- q' = -4.0 μC = -4.0 × 10 C and
- r = distance of charge from origin = 0 - x₂ = 0 - (-2.0 m) = 0 m + 2.0 m = 2.0 m
Since both electric fields are equal in magnitude and directed along the negative x-axis, the net electric field at the origin is
E" = E + E'
= -2E
= -2kq/r²
<h3>What is the electric potential at the origin?</h3>
So, the electric potential at the origin is V = -∫₂⁰E".dr
= -∫₂⁰-2kq/r².dr
Since E and dr = dx are parallel and r = x, we have
= -∫₂⁰-2kqdxcos0/x²
= 2kq∫₂⁰dx/x²
= 2kq[-1/x]₂⁰
= -2kq[1/x]₂⁰
= -2kq[1/0 - 1/2]
= -2kq[∞ - 1/2]
= -2kq[∞]
= -∞
So, the electric potential at the origin of the xy coordinate system is negative infinity
Learn more about electric potential here:
brainly.com/question/26978411
#SPJ11
Electrons are a stable sub atomic particle that has a negative charge and is found in all atoms and is the main carrier of electricity through solids.
In a metal, some of the electrons can escape from the atoms and are free to move around inside the metal. These electrons are referred to as 'conduction electrons'.
<span>A current is a flow of charge. In metal a current is the flow of the conduction electrons through the metal. This can occur when connected to battery for example: The battery pumps the conduction electrons around the circuit. </span>