Answer: Taking into account sound is a wave, we can use the information of the displacement (generally given as a graph) to find the wavelength and frequency, then we can calculate the speed with the formula of the speed of a wave.
Explanation:
If we have the displacement graph of the sound wave, we can find its amplitude, its wavelength and period (which is the inverse of frequency).
Now, if we additionally have the frequency as data, we can use the equation of the speed of a wave:

Where:
is the speed of the sound wave
is the wavelength
is the frequency
Work, scientifically speaking, is done when a force is applied to an object which consequently moves the object at a certain direction. Work in formula, is force multiplied with distance.
W = F x d
We simply asked to name three uses for mercury.
The most common and well-known use of mercury is the production of thermometers. It's property to stay liquid at room temperature makes it ideal for a temperature indicator. However, the use of mercury is thermometers has been phased out due to health hazards.
It is also used to form an amalgam which is the result of its combination with silver or gold. Mercury has been used to mine gold and silver. This application has also been phased out.
Today's use of mercury includes mercury-vapor lamps which are the bright lamps used in high-ways.
Nuclear fusion because atomic nuclei combine to form a heavier nucleus. Option A is correct.
<h3>What is nuclear fusion?</h3>
The process by which two or more tiny nuclei unite to generate a bigger nucleus is known as a nuclear fusion reaction.
The more energy it takes to liberate an electron from a smaller atom. This is referred to as binding energy.
As a result, when two little nuclei fuse together, there is more binding energy than when two big nuclei fuse together.
For example, the fusion of two hydrogen atoms produces more energy than the fusion of one helium atom, and surplus energy is expelled into space upon binding.
Nuclear fusion because atomic nuclei combine to form a heavier nucleus.
Hence, option A is correct.
To learn more about nuclear fusion refer to the link;
brainly.com/question/14019172
#SPJ1
AS
work done =W = F.d = F d cosФ (Ф is angle between force F and displacement d) If a body/object is moving on a smooth surface (friction-less surface ) .There is no force acting on that body. F=0 so W=FdcosФ= (0)dcosФ ⇒ W=0
Now if a body is facing some amount of force but under the action of force there is no displacement covered. d=0 so W =FdcosФ= F(0)cosФ ⇒W=0
example: A person is applying a force on rigid wall but wall remains at rest there is no displacement occurs in wall.
The third term upon which work done dependent is angle between force and displacement i.e Ф. If Ф=90° then W= FdcosФ= Fdcos90⇒ W=0 ( as cos 90°=0)