Let's solve the equation:
9x+27 = 9(x+2)+9 ← Distribute 9 to the x and 2
9x+27 = 9x+18+9 ← Combine like terms
9x+27 = 9x + 27 ← Subtract 27 from both sides
9x = 9x
Infinitely many solutions would be correct because no matter what x is, it will always equal each other the both sides of the equation because it is 9 times x on both sides.
Answer:
Option (3)
Step-by-step explanation:
Glide reflection of a figure is defined by the translation and reflection across a line.
To understand the glide rule in the figure attached we will take a point A.
Coordinates of the points A and A' are (2, -1) and (-2, 4).
Translation of pint A by 5 units upwards,
Rule to be followed,
A(x, y) → A"[x, (y + 5)]
A(2, -1) → A"(2, 4)
Followed by the reflection across y-axis,
Rule to be followed,
A"(x, y) → A'(-x, y)
A"(2, 4) → A'(-2, 4)
Therefore, by combining these rules in this glide reflections of point A we get the coordinates of the point point A'.
Option (3) will be the answer.
Answer:
y = -3/2 x +13
Step-by-step explanation:
We want our line to be perpendicular to
y = 2/3 x -1
The slope of this line is 2/3 (since it is written in the form y = mx+b and m is the slope)
Perpendicular lines have negative reciprocal slopes
m = -(3/2)
The slope of our new line is -3/2
We can use point slope form of the equation
y-y1 - m (x-x1)
y - 7 = -3/2 (x-4)
Distribute
y-7 = -3/2x +6
Add 7 to each side
y-7+7 = -3/2 x +6+7
y = -3/2 x +13
This statement is false. The dollar is worth 100 cents.
Hope this helps :)
B. Is the right answer
First you have to take the common elements then use an identity/formula to get the rest
x^3 - 3x^2 + x-3
x^2 (x-3) +1 (x-3)
(x^2 +1) (x-3)
(x-1)(x+1)(x-3) {using a^2-b^2 on x^2-1^2}