1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marrrta [24]
3 years ago
8

When a vehicle is stopped the suspension load is ?

Engineering
1 answer:
kipiarov [429]3 years ago
7 0

Answer:

Stable

Explanation:

You might be interested in
True or false? if i were to hook up an ac voltage source to a resistor, the voltage drop across the resistor would be in phase w
hodyreva [135]

Answer: True

Explanation:

4 0
2 years ago
Water at atmospheric pressure boils on the surface of a large horizontal copper tube. The heat flux is 90% of the critical value
masya89 [10]

Answer:

The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C

Explanation:

The properties of water at 100°C and 1 atm are:

pL = 957.9 kg/m³

pV = 0.596 kg/m³

ΔHL = 2257 kJ/kg

CpL = 4.217 kJ/kg K

uL = 279x10⁻⁶Ns/m²

KL = 0.68 W/m K

σ = 58.9x10³N/m

When the water boils on the surface its heat flux is:

q=0.149h_{fg} \rho _{v} (\frac{\sigma (\rho _{L}-\rho _{v})}{\rho _{v}^{2} }  )^{1/4} =0.149*2257*0.596*(\frac{58.9x10^{-3}*(957.9-0.596) }{0.596^{2} } )^{1/4} =18703.42W/m^{2}

For copper-water, the properties are:

Cfg = 0.0128

The heat flux is:

qn = 0.9 * 18703.42 = 16833.078 W/m²

q_{n} =uK(\frac{g(\rho_{L}-\rho _{v})     }{\sigma })^{1/2} (\frac{c_{pL}*deltaT }{c_{fg}h_{fg}Pr  } \\16833.078=279x10^{-6} *2257x10^{3} (\frac{9.8*(957.9-0.596)}{0.596} )^{1/2} *(\frac{4.127x10^{3}*delta-T }{0.0128*2257x10^{3}*1.76 } )^{3} \\delta-T=20.4

The tube surface temperature immediately after installation is:

Tinst = 100 + 20.4 = 120.4°C

For rough surfaces, Cfg = 0.0068. Using the same equation:

ΔT = 10.8°C

The tube surface temperature after prolonged service is:

Tprolo = 100 + 10.8 = 110.8°C

8 0
3 years ago
I want to solve the question
DedPeter [7]

Answer:

yes.

Explanation:

5 0
3 years ago
(1.24) Consumer Reports is doing an article comparing refrigerators in their next issue. Some of the characteristics to be inclu
kondaur [170]

Answer:

“height is a quantitative variable ”

Explanation:

According to the question asked, answer is “height is a quantitative variable ”

Height is a quantitative variable because it is related to the measurement and in measurement, when we measure something we deal with number (numerical data)

Numerical data is a type of quantitative data that is why we say “height is a quantitative variable”  

There are some other possible questions in the given paragraph which I would like to mention here,  are as following:

Which are the categorical variables in the given report?

<u>Answer: </u>Energy star complaints

Top, Bottom or side-by-side freezer

Which are the quantitative variables in the given report?

<u>Answer:</u> Estimated Energy Consumption in kilowatts

Width, depth, and height in inches

Capacity in Cubic Feet  

What are the individuals in the report?

<u>Answer: </u>The brand name and model  

8 0
3 years ago
How high a building could fire hoses effectively spray from the ground? Fire hose pressures are around 1 MPa. (It is also said t
Mrac [35]

Answer:

z_{2} = 91.640\,m

Explanation:

The phenomenon can be modelled after the Bernoulli's Principle, in which the sum of heads related to pressure and kinetic energy on ground level is equal to the head related to gravity.

\frac{P_{1}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}= z_{2}+\frac{P_{2}}{\rho\cdot g}

The velocity of water delivered by the fire hose is:

v_{1} = \frac{(300\,\frac{gal}{min} )\cdot(\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot (0.3\,m)^{2}}

v_{1} = 0.267\,\frac{m}{s}

The maximum height is cleared in the Bernoulli's equation:

z_{2}= \frac{P_{1}-P_{2}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}

z_{2}= \frac{1\times 10^{6}\,Pa-101.325\times 10^{3}\,Pa}{(1000\,\frac{kg}{m^{3}} )\cdot(9.807\,\frac{m}{s^{2}} )} + \frac{(0.267\,\frac{m}{s} )^{2}}{2\cdot (9.807\,\frac{m}{s^{2}} )}

z_{2} = 91.640\,m

7 0
3 years ago
Other questions:
  • The function of a circuit breaker is to _____.
    12·1 answer
  • DO NOW: Name the three main legal categories of ownership.
    12·1 answer
  • Use the map to complete the table by selecting the boxes that best describe how ocean currents affect the
    14·1 answer
  • Is it possible to interface an IC with a different technology such as TTL to HCS12 ports? What are the conditions in terms of el
    10·1 answer
  • When will the entropy value of the universe attained its maximum value?
    13·1 answer
  • Help Please!!!!!!!<br><br> Whatever3443<br> Please help!
    9·2 answers
  • Homes may be heated by pumping hot water through radiators. What mass of water (in g) will provide the same amount of heat when
    8·1 answer
  • A 5-mm-thick stainless steel strip (k = 21 W/m•K, rho = 8000 kg/m3, and cp = 570 J/kg•K) is being heat treated as it moves throu
    6·1 answer
  • What is the purpose of a hot water heater?​
    8·1 answer
  • 6) Describe the differences between the troposphere and stratosphere.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!