Answer:
y≤3
Step-by-step explanation:
5y+4≤22−y
<em>Step 1: Simplify both sides of the inequality.</em>
5y+4≤−y+22
<em>Step 2: Add y to both sides.</em>
5y+4+y≤−y+22+y
6y+4≤22
<em>Step 3: Subtract 4 from both sides.</em>
6y+4−4≤22−4
6y≤18
<em>Step 4: Divide both sides by 6.</em>
6y/6≤18/6
y≤3
Answer:
A
Step-by-step explanation:
To find how much 3/4 of a number is, multiply 3.4 by the number. Since the book is 7/8 inches thick, Brenden read 3/4 * 7/8.
To multiply fractions, multiply straight across numerator and denominator.
3/4 * 7/8 = 3*7/ 4*8 = 21/32
Answer:
The following are the solution to the given points:
Step-by-step explanation:
Given value:
![1) \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\2) \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}](https://tex.z-dn.net/?f=1%29%20%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7Bk%2B1%7D%20-%20%5Cfrac%7B1%7D%7Bk%2B2%7D%5C%5C%5C%5C2%29%20%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7B%28k%2B6%29%28k%2B7%29%7D)
Solve point 1 that is
:
when,
![k= 1 \to s_1 = \frac{1}{1+1} - \frac{1}{1+2}\\\\](https://tex.z-dn.net/?f=k%3D%201%20%5Cto%20%20s_1%20%3D%20%5Cfrac%7B1%7D%7B1%2B1%7D%20-%20%5Cfrac%7B1%7D%7B1%2B2%7D%5C%5C%5C%5C)
![= \frac{1}{2} - \frac{1}{3}\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B3%7D%5C%5C%5C%5C)
![k= 2 \to s_2 = \frac{1}{2+1} - \frac{1}{2+2}\\\\](https://tex.z-dn.net/?f=k%3D%202%20%5Cto%20%20s_2%20%3D%20%5Cfrac%7B1%7D%7B2%2B1%7D%20-%20%5Cfrac%7B1%7D%7B2%2B2%7D%5C%5C%5C%5C)
![= \frac{1}{3} - \frac{1}{4}\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B3%7D%20-%20%5Cfrac%7B1%7D%7B4%7D%5C%5C%5C%5C)
![k= 3 \to s_3 = \frac{1}{3+1} - \frac{1}{3+2}\\\\](https://tex.z-dn.net/?f=k%3D%203%20%5Cto%20%20s_3%20%3D%20%5Cfrac%7B1%7D%7B3%2B1%7D%20-%20%5Cfrac%7B1%7D%7B3%2B2%7D%5C%5C%5C%5C)
![= \frac{1}{4} - \frac{1}{5}\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B4%7D%20-%20%5Cfrac%7B1%7D%7B5%7D%5C%5C%5C%5C)
![k= n^ \to s_n = \frac{1}{n+1} - \frac{1}{n+2}\\\\](https://tex.z-dn.net/?f=k%3D%20n%5E%20%20%5Cto%20%20s_n%20%3D%20%5Cfrac%7B1%7D%7Bn%2B1%7D%20-%20%5Cfrac%7B1%7D%7Bn%2B2%7D%5C%5C%5C%5C)
Calculate the sum ![(S=s_1+s_2+s_3+......+s_n)](https://tex.z-dn.net/?f=%28S%3Ds_1%2Bs_2%2Bs_3%2B......%2Bs_n%29)
![S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....\frac{1}{n+1}-\frac{1}{n+2}\\\\](https://tex.z-dn.net/?f=S%3D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B4%7D%2B%5Cfrac%7B1%7D%7B4%7D-%5Cfrac%7B1%7D%7B5%7D%2B.....%5Cfrac%7B1%7D%7Bn%2B1%7D-%5Cfrac%7B1%7D%7Bn%2B2%7D%5C%5C%5C%5C)
![=\frac{1}{2}-\frac{1}{5}+\frac{1}{n+1}-\frac{1}{n+2}\\\\](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B1%7D%7Bn%2B1%7D-%5Cfrac%7B1%7D%7Bn%2B2%7D%5C%5C%5C%5C)
When ![s_n \ \ dt_{n \to 0}](https://tex.z-dn.net/?f=s_n%20%5C%20%5C%20dt_%7Bn%20%5Cto%200%7D)
![=\frac{1}{2}-\frac{1}{5}+\frac{1}{0+1}-\frac{1}{0+2}\\\\=\frac{1}{2}-\frac{1}{5}+\frac{1}{1}-\frac{1}{2}\\\\= 1 -\frac{1}{5}\\\\= \frac{5-1}{5}\\\\= \frac{4}{5}\\\\](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B1%7D%7B0%2B1%7D-%5Cfrac%7B1%7D%7B0%2B2%7D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B1%7D%7B1%7D-%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D%201%20-%5Cfrac%7B1%7D%7B5%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B5-1%7D%7B5%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B4%7D%7B5%7D%5C%5C%5C%5C)
![\boxed{\text{In point 1:} \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2} =\frac{4}{5}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctext%7BIn%20point%201%3A%7D%20%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7Bk%2B1%7D%20-%20%5Cfrac%7B1%7D%7Bk%2B2%7D%20%3D%5Cfrac%7B4%7D%7B5%7D%7D)
In point 2: ![\sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}](https://tex.z-dn.net/?f=%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7B%28k%2B6%29%28k%2B7%29%7D)
when,
![k= 1 \to s_1 = \frac{1}{(1+6)(1+7)}\\\\](https://tex.z-dn.net/?f=k%3D%201%20%5Cto%20%20s_1%20%3D%20%5Cfrac%7B1%7D%7B%281%2B6%29%281%2B7%29%7D%5C%5C%5C%5C)
![= \frac{1}{7 \times 8}\\\\= \frac{1}{56}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B7%20%5Ctimes%208%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B56%7D)
![k= 2 \to s_1 = \frac{1}{(2+6)(2+7)}\\\\](https://tex.z-dn.net/?f=k%3D%202%20%5Cto%20%20s_1%20%3D%20%5Cfrac%7B1%7D%7B%282%2B6%29%282%2B7%29%7D%5C%5C%5C%5C)
![= \frac{1}{8 \times 9}\\\\= \frac{1}{72}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B8%20%5Ctimes%209%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B72%7D)
![k= 3 \to s_1 = \frac{1}{(3+6)(3+7)}\\\\](https://tex.z-dn.net/?f=k%3D%203%20%5Cto%20%20s_1%20%3D%20%5Cfrac%7B1%7D%7B%283%2B6%29%283%2B7%29%7D%5C%5C%5C%5C)
![= \frac{1}{9 \times 10} \\\\ = \frac{1}{90}\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B9%20%5Ctimes%2010%7D%20%5C%5C%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B90%7D%5C%5C%5C%5C)
![k= n^ \to s_n = \frac{1}{(n+6)(n+7)}\\\\](https://tex.z-dn.net/?f=k%3D%20n%5E%20%20%5Cto%20%20s_n%20%3D%20%5Cfrac%7B1%7D%7B%28n%2B6%29%28n%2B7%29%7D%5C%5C%5C%5C)
calculate the sum:![S= s_1+s_2+s_3+s_n\\](https://tex.z-dn.net/?f=S%3D%20s_1%2Bs_2%2Bs_3%2Bs_n%5C%5C)
![S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(n+6)(n+7)}\\\\](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B1%7D%7B56%7D%2B%5Cfrac%7B1%7D%7B72%7D%2B%5Cfrac%7B1%7D%7B90%7D....%2B%5Cfrac%7B1%7D%7B%28n%2B6%29%28n%2B7%29%7D%5C%5C%5C%5C)
when ![s_n \ \ dt_{n \to 0}](https://tex.z-dn.net/?f=s_n%20%5C%20%5C%20dt_%7Bn%20%5Cto%200%7D)
![S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(0+6)(0+7)}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{6 \times 7}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{42}\\\\=\frac{45+35+28+60}{2520}\\\\=\frac{168}{2520}\\\\=0.066](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B1%7D%7B56%7D%2B%5Cfrac%7B1%7D%7B72%7D%2B%5Cfrac%7B1%7D%7B90%7D....%2B%5Cfrac%7B1%7D%7B%280%2B6%29%280%2B7%29%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B56%7D%2B%5Cfrac%7B1%7D%7B72%7D%2B%5Cfrac%7B1%7D%7B90%7D....%2B%5Cfrac%7B1%7D%7B6%20%5Ctimes%207%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B56%7D%2B%5Cfrac%7B1%7D%7B72%7D%2B%5Cfrac%7B1%7D%7B90%7D%2B%5Cfrac%7B1%7D%7B42%7D%5C%5C%5C%5C%3D%5Cfrac%7B45%2B35%2B28%2B60%7D%7B2520%7D%5C%5C%5C%5C%3D%5Cfrac%7B168%7D%7B2520%7D%5C%5C%5C%5C%3D0.066)
![\boxed{\text{In point 2:} \sum ^{\infty}_{k = 1} \frac{1}{(n+6)(n+7)} = 0.066}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctext%7BIn%20point%202%3A%7D%20%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7B%28n%2B6%29%28n%2B7%29%7D%20%3D%200.066%7D)
Answer:
1/16
Step-by-step explanation:
Answer:
Step-by-step explanation:
Did the calculations myself, probably too late for these to be of any use but I'll leaave them here anyways for anyone else that needs it in the future. Love yall!