Answer: 2.60 x 10^23 molecules
50.0 grams x (1 mol/115.79 grams) = 0.431816219 moles
0.431816219 mol x (6.02 x 10^23 molecules/1 mol) = 2.599533638 x 10^23 molecules (final answer is rounded)
According to florida wildlife group who experimentally tape magnets to crocodile heads to disrupt their homing ability so they don't wander into residential areas
Answer:
b) The molecule has a molecular weight under 200 g/mole
Explanation:
The molecule has a molecular weight under 200 g/mole is the primary requirement for a molecule to be analyzed by Gas Chromatography.
Answer:
THE MOLAR MASS OF THE UNKNOWN COMPOUND IS 242.02 g/mol.
Explanation:
First:
Calculate the change in freezing point:
Freezing point of pure benzene = 5.5°C
Change in temperature = 5.5 - 3.06 = 2.44 °C
Second:
Using the formula:
Δt = i Kf m
Let's assume i = 1
Kf = 5.12 °C/m
M = x / 0.250 kg of benzene
Then we can calculate x which is the molarity
Re-arranging the formula, we have:
m = Δt / i Kf
x / 0.250 = 2.44 / 1 * 5.12
x = 2.44 * 0.250 / 5.12
x = 0.61 / 5.12
x = 0.119 M
Since it is well known that molarity is the mass of a substance divided by its molar mass. We can then calculate the molar mass.
Molar mass = Mass / molarity
Molar mass = 28.8 g / 0.119 M
Molar mass =242.02 g/mol
Hence, the molar mass of the unknown molecular compound is 242.02 g/mol.