Answer:
Acceleration is zero.
Explanation:
The slope of a position time graph gives the velocity of the body.
If the slope is constant means the velocity is constant.
Now, acceleration is the measure of the change in velocity of a body over a given time interval.
So, the acceleration of a body is directly proportional to the change in velocity of the body.
If there is no change in velocity, this means that the acceleration of the body is zero.
Here, the slope is a constant implying that the velocity is a constant. So, there is no change in velocity. This implies that the acceleration is zero for the body in the given time interval.
Thus, if a position time graph has a constant slope, one can infer that the acceleration is zero.
<span>The alkali metals and hydrogen are reactive because they have only one electron to give in order to complete their valence shell. It is easier to give that one electron so when given the opportunity they will. This means they will react with anything polar or willing to take an electron.</span>
Answer:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Explanation:
First of all, let us balance the equation to give;
2Sb(OH)3 (s) + 3Na2S (aq) = Sb2S3 + 3NaOH
Now, we can observe the presence of positive Sodium ions (Na+) and negative hydroxyl ions (OH-) on both left and right sides of the equation.
Now, the two ions will cancel out. These ions are not really involved in the overall reaction and thus do not require being written in the overall equation. Hence, the overall net ionic reaction can now be written as:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Pute because I’m smart and I know the right answer
The mixture contains 62 % one isomer and 38 % the enantiomer.
Let’s say that the mixture contains 62 % of the (<em>R</em>)-isomer.
Then % (<em>S</em>) = 100 % -62 % = 38 %
ee = % (<em>R</em>) - % (<em>S</em>) = 62 % -38 % = 24 %